
ABSTRACT
This paper describes a mechanism to automate service depend-
ency management in a service-oriented component model. The
impetus behind this mechanism is not merely to eliminate com-
plex and error-prone code from component-based applications,
but also to deal with the phenomena of application building
blocks that exhibit dynamic availability, i.e., they may appear or
disappear at any time and this is not under the control of the ap-
plication. This intense focus on dynamic availability of building
blocks is the result of the belief that applications of the future
will become context aware in order to deal with building block
proliferation. Such applications will employ context-aware archi-
tectures that use context (e.g., location, environment, user task)
as a filter for including/excluding building blocks in/from their
compositions. In this vision, automatic handling of dynamically
available building blocks and their impact on application com-
position is critical. The service dependency management mech-
anism described in this paper is a starting point for such re-
search and is implemented on top of the Open Services Gateway
Initiative (OSGi) framework. The concepts and solutions it
provides are sufficiently general for application in other service-
oriented component models.

Keywords
Service-Oriented Programming, Components, OSGi

 1. INTRODUCTION
The need for techniques to automate component composition and
to reason about such compositions continues to grow as more and
more complex systems are being built using component-oriented
approaches. Nowhere is this need more important than in systems
built from dynamically available components. In this usage, dy-
namic availability refers to a situation where application building
blocks may appear or disappear at anytime. An important aspect
of dynamic availability is that it is not under application control,
which requires that applications be ready to respond at any time
to building block arrival and/or departure.

Computing trends, such as web services and pervasive comput-
ing, are making dynamically available building blocks common-
place. Web services push application functionality into network-

based services and as a result push the inherent unreliability of
distributed systems into ordinary client-side applications. Pervas-
ive computing strives to embed computing power into almost all
imaginable devices, each of which is able to offer services via
wireless networks and other protocols. In both of these cases, ser-
vice failures may occur, for example, when a server crashes or
when a user simply walks out of wireless network range. These
types of occurrences require that applications using the failed ser-
vices deal with their dynamic departure. Likewise, applications
may have to deal with dynamic building block arrival when serv-
ers or network connections are restored or when completely new
services are discovered.

These scenarios are relevant to modern-day computing systems,
but they also foreshadow a future in which continuous network
connectivity is common and building blocks proliferate beyond
the ability of applications to integrate efficiently and meaning-
fully with them. To deal with this coming building block prolifer-
ation, we envision a future where applications leverage context
awareness in the form of context-aware architectures, where
context (e.g., location, environment, user task) is used as a filter
to determine which building blocks are included/excluded
in/from an application's architectural composition at any given
time. In this scenario, dynamic building block availability is the
underlying issue to be resolved. Building blocks appear/disappear
to/from an application based on their relevance to the current
context. In turn, the application's composition must automatically
adapt to these changes. Changes in context, and thus building
block availability, are not under control of the application.

This paper describes our initial steps for addressing these issues
by combining component-oriented and service-oriented concepts.
The concepts from both of these areas are relevant since compon-
ent orientation focuses on application building block definition
and service orientation focuses on service dynamics and substi-
tutability. The prototype platform for our research is implemen-
ted using the Open Services Gateway Initiative (OSGi) [11]
framework, but the ideas are general enough for use in other ser-
vice platforms. This prototype serves to demonstrate the types of
automated composition techniques that are possible today, as
well as to provide a foundation for experimenting with new com-
positional reasoning techniques in a dynamic setting. For ex-
ample, compositional reasoning techniques could be used to en-
sure cost or security constraints as services are added and/or re-
moved to/from an application.

The next section of this paper provides an overview of service-
oriented programming, followed in section 3 by a short descrip-
tion of the OSGi framework. Section 4 presents the Service Bind-
er, which automates service dependency management. Section 5
provides an overview of related work, while sections 6 and 7 dis-
cuss future work and conclusions, respectively.

Automating Service Dependency Management
in a Service-Oriented Component Model

Humberto Cervantes and Richard S. Hall 
Laboratoire LSR Imag, 220 rue de la Chimie 

Domaine Universitaire, BP 53, 38041 
Grenoble, Cedex 9 France 

{Humberto.Cervantes,Richard.Hall}@imag.fr



 2. SERVICE-ORIENTED
PROGRAMMING

Service-Oriented Programming (SOP) is a programming method-
ology that promotes the concept of modeling solutions in terms
of provided services that can be used by arbitrary clients. In this
methodology, a service is a contract of defined behavior. In ser-
vice-oriented programming, a client is not tied to a particular ser-
vice provider, instead, the service providers are interchange-
able [4]. Service-oriented solutions follow a similar pattern that
consists of service providers, service requesters, and a service re-
gistry where services are published at run time by service pro-
viders and discovered by service requesters (see Figure 1). Sever-
al existing technologies implement service-oriented solutions, ex-
amples are Sun Microsystems' Jini [3] and web services [10].

Service-oriented programming has uniques traits when compared
to other programming approaches. One trait is that services are
dynamic in nature, meaning that they can be register-
ed/unregistered to/from the service registry at any moment and
clients must be prepared to cope with this situation. Existing ser-
vice-oriented programming frameworks provide some type of no-
tification API so that service clients can receive events and act
upon the departure or arrival of services. Another trait is that ser-
vice dependencies are unreliable and ambiguous. A service re-
quester must be prepared to cope with situations where no re-
quired services are found or, on the other hand, multiple match-
ing services are found. A final trait is that service requesters do
not directly instantiate service instances, as is the case in object-
orientation, for example. As a result, service requesters do not
know whether they are interacting with a common service in-
stance or with different instances providing the same service. 

Component orientation, which focuses on creating re-usable soft-
ware building blocks, is complementary to service orientation. A
typical view of components is that they implement one or more
provided interfaces, where an interface is a contract of functional
behavior. In this sense, interfaces provided by components are
very similar to service interfaces. This makes components an
ideal candidate for implementing services, where a service is
equated with a provided interface. The result is the concept of a
service-oriented component model, which refers to a component
model that registers the provided interfaces of its components in-
to a service registry. Examples of service-oriented component
models include the OSGi and Avalon [1].

 3. THE OSGI SERVICES PLATFORM
The Open Services Gateway Initiative (OSGi) is an independent,
non-profit corporation working to define and promote open spe-
cifications for the delivery of managed services to networks in
homes, cars, and other types of restricted environments [11]. Spe-

cifically, the OSGi specification defines a service platform that
includes a minimal component model, a small framework for
managing the components, and a service registry. Services (i.e.,
Java interfaces) are packaged along with their implementations
and their associated resources into bundles. Services are de-
ployed, as bundles, into the OSGi framework via wide-area net-
works, i.e., the Internet. 

The OSGi framework creates a host environment for managing
bundles and the services they provide; a bundle is the physical
unit of deployment in OSGi and is also a logical concept used by
the framework to internally represent the service implementation.
Concretely, a bundle is a Java JAR file that contains a manifest
and some combination of Java class files, native code, and asso-
ciated resources. The manifest of the bundle JAR file contains
meta-data describing, among other things, the Java packages that
the bundle requires or provides.

To use a bundle, it must be installed into the framework, which is
handled automatically. An installed bundle is uniquely identifi-
able by either its bundle identifier (a number assigned dynamic-
ally by the framework when the bundle is installed) or by its loc-
ation (which is an arbitrary character string used when installing
the bundle). The location string is used to retrieve the bundle
JAR file and is generally an URL. Since bundles are uniquely
identified by their location string, it is not possible to install two
or more bundles from the same location; thus, a bundle is essen-
tially a singleton.

The management mechanisms provided by the framework allow
for the installation, activation, deactivation, update, and removal
of bundles. When a bundle is installed, it deploys a single com-
ponent, called an activator, that can register and/or use services.
When a bundle is activated, its corresponding activator compon-
ent is instantiated by the framework. The activator implements
activation and deactivation methods that are called to initialize
and de-initialize it, respectively. In the activation/deactivation
methods, the activator receives a context object, which gives it
access to the framework and the service registry. The context al-
lows the activator component to register services, look for other
services, and register itself as a listener to different types of
events that the framework may fire. When registering a service,
the activator component may attach a set of attribute-value pairs
to the service. Many different implementations of the same ser-
vice may be registered by many different activator components
and the associated service properties can be used to differentiate
among them. To look for a service, an activator component uses
the fully qualified service name and an optional filter in LDAP
query syntax over the service properties. The instantiation of ac-
tivator components is only performed by the OSGi framework;
clients have no way to create component instances.

The state of a bundle can be changed at any moment while the
framework is running. When a bundle is stopped, its associated
activator component must unregister its services and release the
services that it is using. Clients of the activator component's ser-
vices must take care to observe the departure of the services. At
that moment they must release the departing services and take
any necessary corrective actions. Apart from these notifications,
the OSGi framework does not provide any kind of support for
service dependency management.

Two classes of service dependencies exist in OSGi: component-
to-service and service-to-service. When a component depends on
a service without itself providing services, we refer to the de-
pendency as a component-to-service dependency. When the com-

Figure 1: Pattern for service-oriented solutions.

Service
Registry

Service
Provider

Service
Requester

1. Publish a service 
description

2. Request a 
service

3. Bind to the 
service



ponent provides services and requires other services to provide
its own service, we refer to the dependency as a service-to-ser-
vice dependency. Writing the code to manage component-to-ser-
vice and service-to-service dependencies is complex and error-
prone; managing service dependencies involves concurrency and
synchronization issues as well as tedious code to monitor the ar-
rival and departure of any used services. The next section de-
scribes a mechanism to automate the tasks associated with ser-
vice registration and service dependency management.

 4. THE SERVICE BINDER
The Service Binder adds automatic service dependency manage-
ment to OSGi and simplifies the task of writing service manage-
ment code, greatly reducing the complexity of developing ser-
vice-based OSGi applications. The Service Binder's goal is to
automate the management of components and their service de-
pendencies.

 4.1 Approach
In general, the OSGi component model deploys one component
per bundle; this component implements an interface, called
BundleActivator, that defines two methods to activate and
deactivate the component. The Service Binder changes this ap-
proach by allowing the bundle to deploy any number of compon-
ent instances. In this context, a component type is associated with
a Java class contained inside the bundle JAR file and a compon-
ent instance is an instance of that class.

The Service Binder provides a generic bundle activator from
which the developer only needs to create an empty subclass and
provide component instance meta-data. The meta-data is in the
form of an XML file, called an instance descriptor (described in
detail in the next subsection), and is used to request which com-
ponent instances the generic activator should create. A big bene-
fit of this approach is that the application code no longer needs to
reference or use the OSGi API; application code is completely
isolated from the underlying OSGi service framework in most
cases.

The goal of the generic activator, and consequently the Service
Binder, is to create and manage each instance described in the in-
stance descriptor file. For each component instance in the in-
stance descriptor, the generic activator creates an instance man-
ager. The instance manager has four responsibilities:
� dynamically monitor the component instance's service de-

pendencies,
� create/destroy the component instance when its service de-

pendencies are satisfied/unsatisfied,
� bind/unbind required services to/from the component in-

stance when it is created/destroyed, and
� register/unregister any services provided by the component

instance after its required services are bound/unbound.

Following from this, a component instance is always in one of
two possible states: invalid or valid (see Figure 2). The invalid
state means that the instance does not exist because at least one
of the its service dependencies is not satisfied. The valid state
means that the instance exists and that all of its service dependen-
cies are satisfied and any provided services are usable. A com-
ponent instance may also be destroyed, at which point it no
longer exists. The ultimate goal of each instance manager is to
keep its associated component instance in a valid state, but this is
not always possible given the dynamic nature of services. As
such, each instance manager actually represents the intention of

creating a component instance. Each instance manager tries to
maintain this intention throughout its lifetime.

 4.2 Instance Descriptor
The instance descriptor is an XML file that contains meta-data
describing the desired component instances to be created by the
generic activator of the Service Binder (as described in the previ-
ous subsection). The instance descriptor file is contained in the
bundle JAR file and extends the bundle's existing meta-data con-
tained in the bundle's manifest file. Each component instance de-
scription includes the name of the class (contained in the bundle
JAR file) that implements the component, the set of services im-
plemented by the component, the set of properties associated
with the services, and a set of service dependencies for the com-
ponent instance.

Service dependencies are the most complex and, at a minimum,
are characterized by the fully qualified service interface name of
the required service. Two important characteristics define the
precise behavior of a service dependency: cardinality and bind-
ing policy. Cardinality is useful for expressing optionality, such
as a zero-to-one dependency, and also for expressing aggrega-
tion, such as a one-to-many dependency. Binding policy is as
either static or dynamic and determines how run-time service
changes are handled and how the component instance life cycle is
managed. A static binding policy indicates that dependency bind-
ings cannot change at run time, whereas a dynamic binding
policy indicates that dependency bindings can change at run time.
A static dependency is simpler to program than a dynamic one. In
the static case, the required service is guaranteed to be present the
entire time the instance is valid, while this condition is not guar-
anteed for dynamic dependencies.

As an example, if a service dependency is defined as zero-to-

Figure 3: Instance descriptor.

Figure 2: Instance life cycle.

����� � �

�
	 	���
���
�����
������ 
��
� 
�������
��� �	 � �

�!��
���
�����
����#"
� 
�������
���� ���� �	 � �

$ %�&��'� � �

�(��"��� ��)� �
��
���
�����
����*")� �

+ 
��� �� + 
��

,)-/.�021 3546-/�

798�
:� ����;  ����<
:� �
��
��2; + ��"�
��

<bundle>
  <instance class="org.foo.impl.SpellCheckServiceImpl">
    <service interface="org.foo.service.SpellCheckService"/>
    <property name="version" value="1.0" type="string"/>
    <requires
      service="org.foo.service.DictionaryService"
      filter="(Language=*)"
      cardinality="1..n"
      policy="dynamic"
      bind-method="addDictionary"
      unbind-method="removeDictionary"
    />
  </instance>
</bundle>



many dynamic, then all available candidate services will be
bound to the component when it is created and as those services
arrive or depart at run time, they will be bound and unbound
from the component as needed, respectively. Using this same ex-
ample, if the dependency is changed to static, then arrivals of
new services will be ignored and departures of bound services
will result in the component instance first being destroyed and
then re-created, if possible. At re-creation, the component in-
stance may then be bound to any new services that had previ-
ously arrived. Thus, with a static binding policy, the component
instance's life cycle is tied to its dependencies as well as changes
to those dependencies, whereas with a dynamic binding policy
the life cycle is only tied to its dependencies.

Figure 3 depicts a simple example of the XML-based instance
descriptor. The different tags used in the instance descriptor are:

<bundle>

Tag that delimits the set of component instances contained
inside the bundle. Several instances with service-to-service or
component-to-service dependencies can be declared for one
bundle. Simple service registrations are also supported.

<instance>

Defines the class of the component instance that will be cre-
ated; the created instance will be used for binding/unbinding
services and may also implement service interfaces itself.

<provides> [optional]

One of these tags must be included for each service interface
that the component instance implements. If at least one these
tags exist, it will result in a service registration for the
defined service interfaces.

<property> [optional]

One of these tags must be included for each property that
should be attached to the component instance. If a
<provides> tag is present, the properties will also be at-
tached to the service registration. The description of a prop-
erty includes its name, value, and type (supported types are:
string, boolean, byte, char, short, int, long, float, double).

<requires> [optional]

One of these tags must be included for each of the component
instance's service dependencies. The properties of this tag
are:
� service: the fully qualified interface name of the required

service.
� filter: LDAP query to narrow search results.
� cardinality: 0..1, 0..n, 1..1, 1..n.
� policy: static or dynamic
� bind-method: The name of the method to call on the com-

ponent instance to bind a service to it.
� unbind-method: The name of the method that to call on

the component instance to unbind a service from it.

The above tags provide all of the meta-data needed to create and
manage a component instance and its service dependencies. In
addition to these tags, the Service Binder introduces a special tag
for creating component factory services. A component factory
service is used to create component instances at run time and is
necessary because OSGi does not define its own component in-

stantiation mechanism. The details of the component service fact-
ory tag are as follows:

<factory> [optional]

This tag contains a single <instance> tag (as described
above). When seeing the factory tag, the Service Binder re-
gisters a special service, called a FactoryService. Cli-
ents may use this factory service to create multiple instances
of the type associated with the factory. The Service Binder
automatically manages any instances created from the factory
service.

Despite the relative simplicity of these constructs, applications
using the Service Binder exhibit interesting characteristics. For
example, it is easy to describe a dynamic plugin-oriented system,
such as a web browser, using a zero-to-many dynamic depend-
ency between the browser and plugin services. This indicates that
the web browser can work without any plugins and that it will
automatically integrate or remove plugins as soon as they are in-
stalled or removed, respectively. Any application using the Ser-
vice Binder can easily exhibit auto-adaptive behavior in response
to dynamically installed and/or uninstalled components. Table 1
summarizes the semantics behind the different dependency defin-
itions.

1..1, static Instance is bound to one service, any change invalid-
ates the instance

1..1, dynamic
Instance is bound to one service, changes do not inval-
idate the instance as long as it can be bound to anoth-
er service

1..n, static Instance is bound to at least one service, any change
invalidates the instance

1..n, dynamic
Instance is bound to at least one service, changes do
not invalidate the instance as long as the binding count
is non-zero

0..1, static
Instance is bound to at most one service (i.e., optional),
if it is bound, departure of the bound service invalidates
the instance

0..1, dynamic Instance is bound to at most one service (i.e., optional),
the instance never becomes invalid

0..n, static
Instance is bound to all available services at the time of
binding, any departure of a bound service invalidates
the instance

0..n, dynamic

Instance is bound to all available services at the time of
binding, as services arrive/depart they are
bound/unbound to/from the instance, the instance nev-
er becomes invalid

Table 1: Different types of service dependencies.

The Service Binder is, itself, created and deployed as a bundle in
the OSGi framework, which means that it can be used in any
OSGi-compliant framework.

 5. RELATED WORK
Related work includes on one side technologies related to service
orientation and on the other side technologies related to depend-
ency management. The former include service-oriented architec-
tures such as Jini and Web Services, but also service-oriented
component models such as Avalon. The latter include service
composition mechanisms and dynamically reconfigurable sys-
tems.

Jini [3] is a set of specifications for a distributed service frame-
work. The Jini infrastructure provides mechanisms for service re-
gistration, lookup, and notifications. Jini services can be added or
removed from a registry, called the Jini federation, at any mo-



ment. Service clients, providers and the registry can reside in dif-
ferent machines, so all communication takes place through RMI.
Jini supports distributed garbage collection through the concept
of leasing, which grants a client to a service access to the service
for a defined period of time. The Jini specification does not ad-
dress service dependency automation.

Web services [10] are a service infrastructure that provides ser-
vice description (WSDL) [15], discovery (UDDI) [2], and com-
munication mechanisms (SOAP) [14] all based on XML, which
makes them programming language independent. Web services
technologies are not necessarily component oriented, but are
complementary. Some recent work is looking into service de-
pendencies, but not into service dependency management.

Avalon [1] is a service-oriented component model that is inten-
ded to be used as the infrastructure underlying server-side pro-
jects in the Apache organization. In Avalon there can be multiple
service registries that allow groups of services to be created,
however, service lookup mechanisms are very simple. In Avalon
there is no support for service dependency management.

Service composition is another area that is related to this work.
Combs [6] is studying service composition through a scalable,
agent-based workflow language. Another system that supports
service composition is eFlow [5]. eflow supports the specifica-
tion, enactment, and management of composite e-services,
modeled as processes that are executed by a service process en-
gine. eFlows supports dynamic changes to the process schema
and to the process state. Currently, all known service composi-
tion projects are taking a process or workflow approach instead
of an architectural approach.

Dynamically reconfigurable systems generally employ an expli-
cit architecture model and map changes on the model to the im-
plementation. Examples of dynamic reconfigurable systems in-
clude ArchStudio [12] and [9]. Some dynamically reconfigur-
able systems are built by following new computing paradigms
such as autonomic [8] or proactive computing [13]. Autonomic
computing is oriented towards solving the problem of managing
complexity by allowing systems to make decisions. To reach that
goal, systems and their components must have the ability to self-
monitor, self-heal, self-configure, and improve their perform-
ance. Proactive systems are based on prediction of user needs so
that the system can take decisions with a minimum amount of
user input. Both techniques are complementary and require some
level of context awareness to take their decisions. Autonomic and
proactive computing are relatively new fields that are still being
defined and today only few applications built upon them are
available. These applications, however, will require very dynam-
ic and flexible infrastructures.

 6. FUTURE WORK
The Service Binder currently uses a simple approach for resolv-
ing composition decisions, specifically it uses the fully qualified
service interface name and an LDAP query over service proper-
ties to resolve composition dependencies. In the case where mul-
tiple choices for resolving a dependency exist, it simply selects
the first one. The goal is to make this process more sophisticated.

One step is to use heuristics to further narrow the selection pro-
cess when multiple choices exist. For example, when selecting a
service to resolve a dependency, it might be more worthwhile to
choose one whose implementing component has fewer dependen-
cies of its own, because this might indicate that it will be easier
to maintain. Along these lines, if two candidate implemention

components have the same number of dependencies, it may be
worthwhile to consider the types of dependencies (e.g., static or
dynamic) and to choose the component with dynamic dependen-
cies since this component may be more resilient to changes in its
environment.

Standard heuristics, such as these, only go so far and cannot take
advantage of higher level component knowledge. To make this
possible, we plan to modify the Service Binder to allow plug-
gable “resolvers” that will be able to narrow selection choices us-
ing arbitrary reasoning techniques. This approach will provide an
interesting testbed for new compositional reasoning approaches.

In addition to these issues, mechanisms are also necessary to deal
with global composition issues. In general, the Service Binder
deals with localized composition and even this simple approach
makes it possible to create applications with very interesting
characteristics, but it lacks some predictability as a result. For ex-
ample, if two candidate services are available, the one chosen to
resolve the dependency is non-deterministic. The Service
Binder's focus on localized dynamic availability and substitutab-
ility must be mirrored at an architectural level with a service-ori-
ented architecture. A service-oriented architecture must be flex-
ible to support dynamic availability, but must also try to attain
some level of predictability.

We envision a hierarchical service-oriented architecture model
that allows compositions to be used as components in higher
level compositions. In this vision, dynamic changes in compon-
ent availability will percolate up and down the composition hier-
archy to repair and adapt the application as components arrive
and depart. This scenario implies the need for even more ad-
vanced compositional reasoning techniques to determine com-
ponent “fit” as well as to verify global properties of the applica-
tion.

 7. CONCLUSION
Computing trends such as web services and pervasive computing
are increasing the importance of application building blocks that
exhibit dynamic availability due to their inherent unreliability
that is not under application control. Further, these trends are
leading to a proliferation of application building blocks that re-
quire new techniques for composing applications. Our view is
that applications of the future will use context-aware architec-
tures to automatically adapt their compositions according to the
current usage context in order to make building block integration
decisions. At the heart of this vision is the need to automate ap-
plication composition.

This paper introduced a mechanism to automate service depend-
ency management in a service-oriented component model. De-
pendencies between components and services are described de-
claratively in an XML file that is deployed along with the com-
ponent. This file is parsed by a mechanism called the Service
Binder, which manages the components and their dependencies
automatically. The benefits of the approach are immediate: de-
pendency management code is separated from the service imple-
mentation, the need to write complex and error prone dependency
management code is eliminated, and the application is isolated
from the underlying service framework.

The mechanism described in this paper was implemented on top
of the OSGi service-oriented framework, but the characterization
of service dependencies is also valid for other service platforms.
The problems that OSGi programmers encounter are similar to
those that a Jini or web services programmer must solve.



This work belongs to a bigger project, called Gravity, whose goal
is to define a hierarchical service-oriented component model that
fully supports dynamic availability of application building
blocks. The Service Binder is the underlying mechanism that
handles the dependencies among components and services. Even
with the relatively simple concepts introduced by the Service
Binder, resulting applications have interesting characteristics
with respect to run-time adaptability. The Service Binder is avail-
able at: http://gravity.sourceforge.net.

 8. REFERENCES
[1] Apache.org, "The Avalon Framework",
http://jakarta.apache.org/avalon 

[2] Ariba Corp., IBM Corp., and Microsoft Corp. "UDDI Tech-
nical White Paper," September 2000.

[3] K. Arnold, R. O'Sullivan, W. Scheifler, and A. Wollrath.
"The Jini Specification," Addison-Wesley, Reading, Mass. 1999.

[4] G. Bieber, J. Carpenter, "Introduction to Service-Oriented
Programming", September 2001, Online whitepaper at
http://www.openwings.org/download.html

[5] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M. Shan.
“Adaptive and Dynamic Service Composition in eFlow,” Tech-
nical Report HPL-2000-39, Hewlett-Packard, 2000.

[6] N. Combs. “Reliable Recruitment and Assembly of Peer-to-
Peer Services and Distributed Workflow,” Working Conference

on Complex and Dynamic Systems Architecture, December
2001.

[7] C.R. Hofmeister. “Dynamic Reconfiguration of Distributed
Applications,” Ph.D. Thesis, Computer Science Department,
University of Maryland, College Park, 1993.

[8] P. Horn. “Autonomic Computing,” IBM Manifesto, October
2001.

[9] F. Kon. “Automatic Configuration of Component-Based Dis-
tributed Systems,” Ph.D. Thesis, Department of Computer Sci-
ence, University of Illinois at Urbana-Champaign, May 2000.

[10] H. Kreger. "Web Services Conceptual Architecture (WSCA
1.0)," IBM Software Group, 2001.

[11] Open Services Gateway Initiative. "OSGI Service Platform,"
Specification Release 2.0, October 2001.

[12] P. Oreizy and R.N. Taylor. “On the Role of Software Archi-
tectures in Runtime System Reconfiguration,” IEEE Proceed-
ings-Software, vol 145, no. 5, October 1998.

[13] D.L. Tennenhouse. “Proactive Computing,” Communica-
tions of the ACM, Vol. 43 No. 5, pp.43-50, May  2000.

[14] World Wide Web Consortium. "Simple Object Access Pro-
tocol (SOAP) 1.1," W3C Note 08, May 2000.

[15] World Wide Web Consortium. "Web Services Description
Language (WSDL) 1.1," W3C Note 15 March 2001."


