A Framework for Constructing Adaptive Component-
Based Applications: Concepts and Experiences

Humberto Cervantes and Richard S. Hall

Laboratoire LSR-IMAG, 220 rue de la Chimie,
Domaine Universitaire, BP 53, 38041
Grenoble, Cedex 9 FRANCE
{Humberto.Cervantes,Richard.Hall} @imag.fr

Abstract. This paper describes the experience of building component-oriented
applications with a framework that supports run-time adaptation in response to
the dynamic availability of functionality provided by constituent components.
The framework's approach is to define a service-oriented component model,
which is a component model that includes concepts from service orientation
and an execution environment that provides automatic adaptation mechanisms.
This paper focuses on an example scenario and two real-world examples where
this framework has been used.

1. Introduction

This paper describes the experience of building component-oriented applications with a
framework, called Gravity [4], that supports run-time adaptation in response to the dy-
namic availability of functionality provided by constituent components. Dynamic avail-
ability is a situation where functionality provided by components may appear or disap-
pear at any time during application execution and this outside of application control.

In this paper, dynamic availability is conceptually caused by continuous deployment
activities that introduce and remove component functionality into the execution envi-
ronment. Continuous deployment activities represent the installation, update, and re-
moval of components during execution by an actor that may or may not be the applica-
tion itself. The constituent components of an application are directly impacted by these
activities, since they are likely to have dependencies on functionality provided by other
components in order to provide their own functionalities. If some required functionality
is removed, a component may not be able to provide its own functionality any longer;
on the contrary, newly arriving functionality may enable another component to provide
its own functionality.

The traditional component-oriented approach is based on the ideas that an applica-
tion is assembled from reusable building blocks [9] (i.e., components) available at the
time of assembly and that during execution, components are not spontaneously added or
removed. As a consequence, dynamic availability is not supported explicitly in compo-
nent models. Of course, it is possible to support dynamically available components
through programmatic means, but this results in mixing both application and adaptation
logic into the application code. In order to simplify this situation, component orientation
should incorporate concepts from other approaches that explicitly support dynamic

availability of functionality, such as service orientation. In service-oriented computing,
services provide functionality that can be published and removed from service reg-
istries [4] at any time.

This paper discusses the experiences of building applications using the Gravity
framework that provides a service-oriented component model and an associated execu-
tion environment. In this approach, functionality provided by components and their sub-
sequent compositions are realized using service-orientation concepts. Special attention
is paid to one aspect of the Gravity framework, called the Service Binder, that manages
adaptation logic at run time. Applications built using this mechanism are capable of as-
sembling and adapting autonomously. The basic approach of the Service Binder was
presented in [3]; this paper describes how applications using this mechanism are built
and how they adapt.

The remainder of the paper is structured as follows: section 2 discusses management
of dynamic availability, section 3 presents an example scenario, section 4 presents two
application scenarios where these concepts were applied, and section 5 presents related
work followed by section 6 with conclusions and future work.

2. Managing dynamic availability

In a service-oriented component model, components provide and require functionality,
where the functionality is modeled as a service that is published and discovered at run
time using a service registry inside the execution environment. Gravity's execution envi-
ronment also manages dynamic availability by creating and destroying bindings among
component instances using the service-oriented interaction pattern of publish-find-
bind [3]. To enable this, a component provides information (dependency properties)
about its service dependencies to the execution environment for run-time management.

In this approach, a component instance is either invalid or valid. An invalid in-
stance's service dependencies are not satisfied and it is unable to execute and to provide
its services, while a valid instance's service dependencies are satisfied and it is able to
execute and provide its services. All instances initially start in an invalid state and be-
come valid if their service dependencies are satisfied. At run time, instances may alter-
nate between valid and invalid as required functionality is added to and removed from
the execution environment, respectively. As such, the creation of a component instance
is intentional, since the execution environment of the framework constantly tries to
maintain the validity of the instance until it is explicitly destroyed.

To facilitate management, a component is described with a component descriptor; an
example descriptor is depicted in figure 1. Inside the component tag of the descriptor,
the class attribute refers to the component implementation, which is a Java class. The
service attribute inside the provides and requires tags corresponds to provided
and required services, respectively, which are described syntactically as Java interfaces.
Additionally, the requires tag declares additional information including:

+ Cardinality. Expresses both optionality and aggregation. In a component descrip-
tor, the lower end of the cardinality value represents optionality, where a '0' means
that dependency is optional and '1' means that it is mandatory. The upper end of
the cardinality value represents aggregation, where a '1' means the dependency is
singular and 'n' means that it is aggregate.

* Policy. Determines how dynamic service changes are handled: a static policy indi-

<component class="org.gravity.webbrowser.WebBrowserImpl">

<provides service="org.gravity.services.WebBrowser"/>
<property name="version" value="1.0" type="string"/>
<requires

service="org.gravity.services.Plugin"

filter=""

cardinality="0..n"

policy="dynamic"

bind-method="addPlugin"

unbind-method="removePlugin"

/>

</component>

Fig. 1. A service component description

cates that bindings cannot change at run time without causing the instance to be-
come invalid, whereas a dynamic policy indicates that bindings can change at run
time as long as bindings for mandatory dependencies are satisfied.

» Filter. Constrains candidate providers of a required service to those matching a
query (written in LDAP query syntax); the query is issued over the service proper-
ties associated with components using the property tag.

* Bind/unbind methods. These methods allow the execution environment to set/un-
set references to the required service, i.e., create bindings.

During execution components may be installed or removed and, as a result, compo-
nent instances are automatically created and destroyed by the execution environment.
When an instance is created, it is associated with an instance manager that acts as a
container responsible for managing instance's life cycle. The instance manager uses the
execution environment's service registry to resolve and monitor its instance's service de-
pendencies. When all of the instance's service dependencies are satisfied, the instance
manager activates the instance and publishes its services; at this point the instance is
valid. During execution, the service registry notifies instance managers about changes in
service availability. An instance manager may need to reconfigure its bindings accord-
ing to dependency properties in response to service registry notifications. If reconfigura-
tion is not possible, the instance manager invalidates its instance and continuously tries
to make it valid again.

3. Assembly and adaptation of an application

In a service-oriented component model, an application is constructed as a set of inter-
connected valid component instances at execution time. Such an application assembles
and adapts autonomously as its constituent component instances are connected by their
respective instance managers. Autonomous management for dynamic availability is dis-
cussed below, along with the main limitation of this approach.

3.1. Autonomous management for dynamic availability

Initial assembly. An application in this framework is typically built out of a “core”
component instance that guides the application's execution. Other component instances

main:
Word

Processor
Component |

DidionaryService language—engl ish
O language=french O language=french
PrintingService DictionaryService PrintingService DidionaySavice
o output=PDF v [output=PDF v
[5) ‘SpellCheckService o ‘Spell CheckService
verson=1.0 frenchdict: verson=1.0 frenchdict:
FrenchDict DictionarySaice FrenchDict
Component o— language=english Component
Service registry S Service registry S

a) Initial assembly

0..1
dynamic
out put=pPDE

output=pFDF

main: _<

\Word

printer:
Print
Component

ot |
Component
2 1..1 Sp
dynamic

DictionaryService

b) Instance addition

0..1
dynamic
output=pDF

englishdict:
EnglishDict
Component|

S

main: 4(mein: @
Word ‘é""'d SpellCheckSarvice
Processor C[)"mmm;m T DictionaryService
(G i SpaliCheckSarvice DictionaryService L @ ==
ynamic
dynamic Check 1.4
2 —O— R i
(englishdict: language-english
EnglishDict 5
Component language=english
language-english
S DictionaryService
o DictionaryService language=english O laguagestrench
language=french @— SpelChedkSavice
O* SpelICheck Service DictionaryService version=2.0
version=10 Q@— Ditionaysavice
DidionayService lenguage=english
© language=english frenchdict:
° SpelICheckService FrenchDict - -
verson=20 Component Service Registry
Service registry |§_-|—

d) Instance substitution
¢) Instance removal

Fig. 2. Word processing application evolution

provide the services used by the core component and these instances can themselves re-
quire services provided by other instances. The assembly process of such an application
begins as instances are created inside the execution environment of the service-oriented
component model. The execution of the application starts the moment the core instance
becomes valid. The validation of the core instance occurs in a specific order that obeys
the service dependency characteristics of the individual components. Specifically, the
order is:
1. Instances with optional or no service dependencies are validated first.
2. Instances with mandatory service dependencies are validated if the services they
require become available due to newly validated services.
3. The second step repeats as long as new services are introduced that resolve addi-
tional mandatory service dependencies.

Figure 2a depicts a word-processor application example that is built out of a core
component instance (main from WordProcessorComponent) that uses services for
spell checking and printing purposes. The main component instance, depicted at the left
of the figure, has two service dependencies; the first dependency is on a spell checking
service and is mandatory, singular, and dynamic, the second dependency is on a printing
service and is optional, singular, and dynamic. In the figure, the main instance is bound
to two instances that provide the required spell checking and printing services, checker
(from SpellCheckComponent) and printer (from PrintComponent), respectively.

The checker instance itself requires a dictionary service; this dependency is mandatory,
aggregate, and dynamic. The checker instance is bound to another component instance
that provides a dictionary service (frenchdict from FrenchDictComponent).

If these four instances are created simultaneously, frenchdict and printer are validat-
ed first in no particular order, after which the frenchdict becomes valid, then the check-
er becomes valid, and finally main becomes valid. At this point the application begins
execution.

Instance addition. Figure 2b shows the word-processor application after a new in-
stance providing a dictionary service (englishdict from EnglishDictComponent) be-
comes available. The characteristics of the spell checker component's service dependen-
cy (aggregate and dynamic) allow new bindings to be created and, as a result, the en-
glishdict instance is added to the application.

Instance removal. Figure 2c shows the word-processor application after the removal
of the printer instance. The destruction of the associated binding does not cause main to
become invalid since the required service interface is characterized as optional and dy-
namic.

Instance substitution. Instance substitution results from the removal of an instance
that satisfies a service dependency that is mandatory, singular, and dynamic. In the
word-processor application, this is the case for the SpellCheckService of the main
instance. The service registry in figure 2c contains an entry for an additional
SpellCheckService than the one being used by the application; since the service de-
pendency is singular, only a single binding is created to one of the available spell check-
er services. In figure 2d, however, the checker instance is removed. In response, the in-
stance manager for the main instance looks for a substitute, which is fulfilled by the
other available component instance. The instance manager creates a binding to the new
spell checker (checker? from EnglishSpellCheckComponent) and the reconfig-
uration succeeds. Notice that checker? is already bound to the existing English dictio-
nary.

Application invalidation and repair. A situation that can occur as a result of an in-
stance being destroyed is the triggering of a “chain reaction” that leads to the invalida-
tion of the core component and, thus, the entire application. This situation occurs if the
word-processor application is in the state depicted in figure 2a and the frenchdict in-
stance is destroyed. The instance manager for the spell checker will look for a replace-
ment, but the checker instance becomes invalid since no alternatives are available. This
invalidation causes the main instance to become invalid, since no other spell checker is
available. This situation causes the instance managers to enter new management cycles.
As a consequence, as soon as a new instance providing a dictionary service becomes
available, the spell checker is re-validated, followed by the main instance, and then the
application as a whole.

3.2. Approachlimitations

The main limitation to this approach is the unpredictability of service dependency bind-
ing creation. Unpredictability results from the ambiguity that arises when there are mul-
tiple candidate services available to resolve a given service dependency. This situation
occurs, for example, when a service dependency is singular, but at the time the instance
manager tries to resolve the dependency, multiple candidates are present. Unpredictabil-
ity can be reduced by using filters in required service interfaces, but this is not suffi-

a) Device monitoring application b) VersaTest extensible client
Fig. 3. Architecture of evaluation applications

cient. Knowing which of the available candidates is the best choice is difficult, if not
impossible. This issue is similar to such research questions as locality, where the desire
is to choose services that a physically near or appropriate.

4. Evaluations

This section describes two application scenarios in which the Service Binder' mecha-
nism was used; the Service Binder, and the service-oriented component model as a
whole, is built on top of the OSGi service platform [8]. The Service Binder simplifies
the construction of applications on the OSGi services platform, where dynamic avail-
ability is typically handled programmatically.

4.1. Device monitoring at Schneider Electric

The Service Binder was used at Schneider Electric? for a research project oriented
around electric device monitoring. In this project, a series of electric devices are con-
nected to a bus that is itself accessible to a gateway running an OSGi platform. A series
of monitoring components inside the system are in charge of polling devices and pro-
ducing notifications when exceptional situations occur. Requirements for this system
are that it must run continuously and that it must be possible to add or remove new
monitoring components in the running system as new devices are connected or discon-
nected to or from the bus, respectively.

Figure 3a represents the architecture of the system. Business objects contain monitor-
ing logic and provide a service that allows a scheduler (the core in this application) to
activate them periodically. Business objects have service dependencies on services that
allow them to create logs and send e-mail notifications.

Support for the run-time addition or removal of business objects is achieved through
the scheduler's service dependency on the BOService, which is optional, aggregate,
and dynamic, and by the business objects' service dependency on the polling service. In
this application, business objects and notification mechanisms can be continuously in-

1 Available for download at http://gravity.sf.net/servicebinder
2 http://www.schneiderelectric.com

troduced into or removed from the system as a result of continuous deployment activi-
ties that are triggered outside the application.

4.2. VersaTest client

The Service Binder was used at a company called Ascert, which creates a system for
testing online transaction processing systems, called VersaTest’. VersaTest runs as a
server and a client for the VersaTest server was built as an extensible environment
where different client-side tools are integrated as plug-ins. The different tools communi-
cate with the server and graphically display different types of information that result
from the server's test cases. The VersaTest client is built around a core that provides the
main functionality of the application, including a menu, toolbar, and a manager for mul-
tiple windows. These services allow multiple tools to work as a cohesive whole.

Figure 3b presents a simplified representation of the architecture of the VersaTest
client system. The core component instance provides two services, one for adding en-
tries to the menu and another one for creating windows. In this application, it is not the
core component that requires services; instead, it provides services that are required by
the tools. Tools not only require core services, but can themselves provide services and
require services from other tools.

The VersaTest client application must support multiple configurations, where a con-
figuration consists of the core and a particular set of tools. In this project, autonomous
assembly capabilities provided by the Service Binder are leveraged as the VersaTest
client is launched by starting an OSGi platform with a set of components corresponding
to the different tools used in a configuration. This means that it is not necessary to cre-
ate explicit compositions for each configuration, it is sufficient to simply include an ar-
bitrary set of tools to compose. The Service Binder also allows tools to be added, re-
moved, and updated during execution, but these capabilities are not currently used in the
commercial version of the application.

5. Related work

Related work includes component models and service platforms, along with techniques
to create auto-adaptive applications. Industrial component models include COM [2],
and CCM [7]. Service platforms include OSGi, Jini, and web services. Jini [1] is a dis-
tributed Java-based service platform that introduces the concept of leases to support dis-
tributed garbage collection. Web services target business application interoperability.
The OSGi's Wire Admin service [8] provides a mechanism to compose OSGi services
between a producer and a consumer, but bindings are explicit and point-to-point.
Dynamically reconfigurable systems focus on changing the architecture of a system
during execution. These systems use explicit architecture models and map changes in
these models to the application implementation. Numerous works exist around self-
adaptation through dynamic reconfiguration in component-based systems, such as [6]
and [5]. This last work presents a framework to create self-organizing distributed sys-
tems. In this approach, component instances are managed independently and their con-
nections are modified when component instances are introduced to or removed from the

3 http://www.ascert.com/versatest.html

system according to constraints defined as an architectural style written in an ADL;
however, the logic resulting from these constraints must be programmed.

6. Conclusions and future work

This paper described the experience of building component-oriented applications with a
framework that supports run-time adaptation in response to the dynamic availability of
functionality provided by constituent components. In this framework, each component
instance is managed independently and its bindings are created and adapted at run time
based on information associated with a component's service dependencies; instances are
constantly managed to maintain their validity with respect to their service dependencies.

Applications built from this framework are capable of adding new functionality or
releasing/substituting departing functionality. They also exhibit self-repairing character-
istics since instance managers strive to maintain component instance validity and, con-
sequently, the validity of the application as a whole. This framework was implemented
on top of the OSGi framework and was successfully used in two different application
scenarios.

Ongoing work includes studying mechanisms to reduce issues associated with unpre-
dictability and ambiguity. These issues are exacerbated when multiple instances of the
same application may exist at the same time, unlike the application scenarios described
in this paper where only one application instance exists at any given time. An initial ap-
proach for addressing these issues is discussed in [4].

Finally, the authors would like to acknowledge the people at Schneider Electric and
Ascert for their support and feedback.

References

[1] Amold, K., O'Sullivan, R.; Scheifler, W. and Wollrath, A., “The Jini Specification,” Addi-
son-Wesley, Reading, Mass. 1999.

[2] Box, D., “Essential COM,” Addison Wesley, 1998.

[3] Cervantes, H. and Hall, R.S., “Automating Service Dependency Management in a Service-
Oriented Component Model,” in Proceedings of CBSE 6, 2003

[4] Cervantes, H. and Hall, R.S., “Autonomous Adaptation to Dynamic Availability Through A
Service-Oriented Component Model”, ICSE 2004

[5] Georgiadis, 1., Magee, J. and Kramer, J., “Self-organising software architectures for dis-
tributed systems,” in Proceedings of the first workshop on Self-healing systems, 2002.

[6] Kon, F., “Automatic Configuration of Component-Based Distributed Systems,” Doctoral
dissertation, Department of Computer Science, University of Illinois. May 2000.

[7] Object Management Group. “CORBA Components: Joint Revised Submission,” August
1999.

[8] Open Services Gateway Initiative. “OSGI Service Platform,” Spec. Rel. 3.0, March 2003.

[9] Szyperski, C., ”Component software: beyond object-oriented programming,” ACM
Press/Addison-Wesley Publishing Co., 1998.

