
I. Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp. 198 – 205, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Using a Lightweight Workflow Engine in a Plugin-Based
Product Line Architecture

Humberto Cervantes and Sonia Charleston-Villalobos

Universidad Autonoma Metropolitana-Iztapalapa (UAM-I),
San Rafael Atlixco Nº 186, Col. Vicentina, C.P. 09340, Iztapalapa. D.F., Mexico

{hcm, schv}@xanum.uam.mx

Abstract. This paper presents a software product line architecture where
applications are assembled by installing a set of plugins on a common software
base. In this architecture, the software base embeds a lightweight workflow
engine that guides the main flow of control and data of the application. This
architecture eliminates the problem of scattered flow of data and control and
facilitates plugin substitution. This architecture is currently being used to build
a biomedical engineering research application on top of the Eclipse platform.

1 Introduction

In recent years, computer users have witnessed the emergence of a wave of successful
applications whose functionalities can be extended via the addition of plugins. Plugins
are binary extension units for an application whose architecture allows functionalities
to be introduced by end-users at well-defined places once the application has been
installed. Plugins are software entities that are closely related to components.
Component-based development, however, does not usually consider that components
can be added to applications after the applications have been installed. Components
are rather used to facilitate the construction of the applications themselves (extensible
or not) [9].

Building an application as a plugin-based system makes sense both from a
technical and an economical point of view. Technically it makes sense because the
approach promotes a high level of modularity and decoupling between the base (or
main) application and the plugins which can be developed independently, helping
reduce delivery periods. Economically, the approach also makes sense, since a
developer can concentrate on the development of the base application or the deve-
lopment of its extensions. Furthermore, since development lifecycles are independent,
plugins can be deployed separately from the base application. Plugin deployment
activities, which are usually performed by end users, include install, update and
removal of the plugins.

A field where the plugin-based approach can be particularly useful is the
construction of software product lines. Software product lines represent sets of
applications (typically from a common application domain) that share features and are
developed by reusing certain elements, such as an architectural foundation [1]. If this
architectural foundation is built following a plugin-based approach, the construction
of the different applications can be achieved by installing different sets of plugins on

 Using a Lightweight Workflow Engine in a Plugin-Based Product Line Architecture 199

top of the foundation. One difficulty with this approach resides, however, in the fact
that applications must typically execute workflows associated with their particular
domain. In the case where an application is built as a set of plugins installed on a
common foundation, the control and data flow of the application is usually scattered
among the foundation and the set of plugins that compose the application. This
situation limits the possibility of plugin update or substitution, since it is difficult for
replacement plugins to guarantee that they implement the correct part in the control
and data flow.

This paper proposes a solution to this problem that introduces concepts from
workflow-based applications into a plugin-based architecture. Workflow-based
applications support the definition and execution of business processes. In such appli-
cations, the definition and execution of the appropriate control and data flow, and the
invocation of the application logic blocks are externalized. As a consequence, changes
to the process can be done without impacting the application logic blocks which
become independent from the main data and control flow and as a consequence can
be replaced more easily [5]. The work presented in this paper is currently being
applied in the construction of a biomedical engineering research application on top of
the Eclipse platform.

The remainder of the paper is structured as follows: section 2 discusses plugin-
based application development using Eclipse and discusses the scattered flow of
control problem, section 3 describes the proposed architecture, section 4 presents
current and future work respectively, section 5 presents related work and finally,
section 6 concludes the paper.

2 Plugin-Based Application Development

This section discusses plugin-based application development and the problem of
scattered flow of control. Due to space restrictions, discussion around plugins focuses
mainly on the Eclipse platform, which is used to implement the ideas described in this
paper.

2.1 Plugin-Based Applications and Eclipse

Today, a wide variety of plugin-based applications exist; these applications include
web browsers, image editing tools and integrated development environments (IDEs).
All of these tools are characterized by the fact that they are built as standalone
applications that provide an initial degree of functionality when installed. This func-
tionality is available even when no plugins are present; for example, when a web
browser is installed, it allows pages to be read but multimedia content cannot usually
be displayed.

Among plugin-based applications, the Eclipse platform [4] has some particular
characteristics. This platform was originally conceived as a foundation to facilitate the
construction of IDEs. As such it provided, in addition to standard elements such as a
text editor, development facilities that included team development support. A specific
development environment could be built by adding a set of tools, for example a
compiler for a particular language, to the base platform. The different tools were

200 H. Cervantes and S. Charleston-Villalobos

delivered as plugins. Today, the Eclipse platform has evolved from being an IDE-
oriented foundation to become a generic plugin-based application foundation.
Development specific elements have been moved out of the base platform which is
now called the Rich Client Platform [6]. The Rich Client Platform (RCP) provides the
minimal functionality required to allow all-purpose plugin-based client-side
applications to be built on top of it.

Eclipse’s plugin model allows plugins to interact directly with other plugins and
not only with the base application. As a result, plugins can be composed in a similar
way to components. Eclipse's plugins provide extensions when they contain new
functionalities to be introduced into the base application or into another plugin.
Plugins can also declare extension points which are locations where other plugins can
introduce their own extensions and enrich the original plugin’s functionality.
Furthermore, extension points are always optional, meaning that any provider of an
extension point must be capable of functioning even if no provider of extensions for
that extension point are present. Finally, the vision behind the Eclipse’s architecture is
that everything is built out of plugins, including the base RCP itself, which currently
consists of around 11 different plugins whose presence is mandatory. The plugins that
form the RCP manage plugin deployment activities and declare a series of extension
points which allow other plugins to introduce new functionalities such as toolbars,
menu entries and views. Today, the RCP is gaining much momentum as the Eclipse
IDE itself facilitates enormously the task of constructing plugin-based applications on
top of the RCP through its Plugin Development Environment (PDE).

2.2 The Structure of an Application Developed on Top of Eclipse

In a certain way the Eclipse’s plugin approach is a hybrid between “traditional”
plugin approaches and component-based development. In Eclipse, a customized (or
extended) base platform is assembled by selecting a set of plugins that will provide
functionalities that are added to the basic ones already provided by the RCP. Once
assembled, this extended base platform is delivered to end users as a standalone
application. The plugins that form this application may not be removed afterwards.
However, after this application is installed, end users can continue extending the
functionality of the application by installing additional plugins into it. The archi-
tecture of a typical application built on top of the RCP is depicted in figure 1. This
figure also shows that plugins can interact directly among each other without
extending the base platform.

2.3 The Problem of Scattered Flow of Control

Eclipse plugins typically provide user interface elements that allow the user to interact
with the application. These user interface elements, such as buttons on a toolbar, for
example, are associated with handlers that can invoke methods declared on an
interface provided by a different plugin's extension. In such a situation the logic that
guides the flow of control and data of the application ends up being scattered among
the plugin set and the base platform. This situation can limit the substitutability of the
plugins used to build the application. For instance, when a plugin is substituted by
another plugin, either by a newer version or by a different plugin that provides the

 Using a Lightweight Workflow Engine in a Plugin-Based Product Line Architecture 201

Rich Client Platform

Plugin Plugin

Plugin

Plugin

Extension point

Extension

Plugin

Plugin

Extended base platform

Fig. 1. Architecture of an application built on top of the Eclipse Rich Client Platform

same extension, the replacing plugin must correctly implement its predecessor's part
of the flow of control and data that is necessary for the application to function
correctly.

In today's applications these problems are addressed by limiting substitutability
and by constraining the places where plugins can extend the base application. This
solution is, however, undesirable for the context of plugin-based product line
architectures, where it is necessary to allow a large number of plugins to be sub-
stituted by completely different sets.

3 A Workflow-Based Product Line Architecture

This section introduces the concepts workflow-based applications and discusses how
these concepts are used to solve the problem exposed in the previous section.

3.1 Workflow-Based Applications

Workflow-based applications support the definition and execution of business
processes (composed of activities associated to a particular domain). In such
applications, the definition and execution of the appropriate control and data flow,
and the invocation of the application logic blocks are externalized. This allows the
workflow to be changed without impacting the application logic blocks [5]. In
workflow-based applications, logic blocks become flow-independent in the sense that
they do not contain application logic associated with the execution of the business
process. This facilitates the replacement of logic blocks.

3.2 Using Workflows in a Plugin-Based Product Line Architecture

To limit the problem of scattered flow of data and control and to facilitate plugin
substitutability and reusability, the concepts of workflow-based applications can be
introduced in a plugin-based product line architecture. The fundamental idea is to
limit the degree of direct interaction among plugins and to introduce a third party (a
mediator) responsible for controlling the application's main flow of control and data.

202 H. Cervantes and S. Charleston-Villalobos

Acquisition Processing Visualization

[Processing required]

[No processing required]

DataBuffer [acquired]

DataBuffer [processed]

Project Management [acquire]

[exit]

Fig. 2. Typical workflow found in DSP applications for biomedical research

In the context of this work, this idea has been used to create a plugin-based product
line architecture oriented towards the construction of digital signal processing (DSP)
applications for biomedical engineering research. In this field, these applications are
generally guided by the workflow depicted in figure 2. This main workflow contains
four different activities: project management, data acquisition, processing and
visualization. The activity diagram shows that data that is acquired can be visualized
immediately or be processed by applying different algorithms before visualization.
Each of the activities of the main workflow is itself guided by a specific sub-
workflow. Figure 3 shows the sub-workflow associated to the acquisition activity in
the main workflow. This sub-workflow allows users to test the acquisition device
before performing the actual data acquisition and storing the corresponding data.

Configure acquisition parameters Test acquisition device
[test]

Acquire

[acquire]

Display data

Store

DataBuffer

Configuration [correct]

DataBuffer

Configuration [tested]

Fig. 3. Detail of the sub-workflow associated to the acquisition activity

To achieve a workflow based approach in plugin-based product line architecture,
the different workflow definitions are contained and executed by the product-line
architecture. Figure 4 illustrates how this is achieved: the product-line architecture,
which is the common element to specific applications, is constructed as an extended
Eclipse base platform that contains a lightweight workflow engine. Plugins are
associated with particular activities, such as data acquisition or visualization. Every
plugin's extension interface provides methods that fall into three different categories.
The first category of methods allow the workflow engine to control the execution of

 Using a Lightweight Workflow Engine in a Plugin-Based Product Line Architecture 203

Fig. 4. Architecture with the lightweight workflow engine

an activity. The second category allows the workflow engine to register itself as an
observer of activity events. The events produced by the plugins include activity
termination and cancellation. The third category of methods allow the workflow
engine to perform data transfer. As a result, workflows are executed as the engine
initiates activities and receives notifications from the plugins.

Finally, even tough the approach described here requires that plugins associated
with different activities to not interact directly, it does not limit plugins associated to a
particular activity from providing extension points that allow other plugins to extend
their functionality. An example of this occurs in the plugin associated with the data
storage activity in figure 4, this plugin can be extended by specialized plugins that
allow the data to be stored in different formats. The fact that the data storage plugin is
extended by other plugins is, however, irrelevant to the application's workflow.

4 Current Results and Future Work

The work presented in this paper is part of an ongoing project that is realized at the
Universidad Autónoma Metropolitana Iztapalapa in Mexico City. This project
received an Eclipse innovation grant from IBM in 2005. The goal of this project is to
build an application to acquire data obtained from respiratory sounds. This application
will be deployed in a hospital environment where it will allow both physicians to
better diagnose certain respiratory conditions and biomedical researchers to gather
data on the field. This project is realized following the Unified Process development-
methodology and is currently in the construction phase. A screen capture of an
executable prototype for the project is depicted in figure 5. This prototype is built on
top of the base architecture described in the previous section.

Future work includes the construction of a different but related application on top
of the same product-line architecture with a set of different plugins. Other areas of
interest include the use of a language to describe the workflows (currently this is done

204 H. Cervantes and S. Charleston-Villalobos

Fig. 5. Screenshots of the application

programmatically). Furthermore, workflow description could itself be delivered via
plugins to facilitate extension. A final area of interest to the authors is the possibility
of supporting dynamic deployment activities in the application, this would include the
install, update and removal of the plugins during execution.

5 Related Work

The work presented in this paper is related to three main research areas which include
component-based software development, product line architectures and workflow-
based applications.

5.1 Component-Based Software Development

As mentioned before, components and plugins have similar features. Examples of
existing component models are JavaBeans [8] and the CORBA Component Model
[7]. Such models are successfully used today in the construction of applications both
on the client and on the server side. However, component models are not really
oriented towards supporting plugin-oriented features such as end-user managed
evolution or the interaction with an extensible application core. It is possible to
implement a plugin-based architecture over a standard component model, but this is
not straightforward.

5.2 Software Product Line Architectures

Among the core assets of a software product line, the software architecture plays the
most central role [1]. One of the most successful plugin-based product line
architectures is the original Eclipse platform, which allowed different IDEs to be
built. A framework that supports the construction of plugin-based product line archi-
tectures is described in [2]. The approach proposed, however, does not deal with the
issue of scattered flow of control.

5.3 Workflow-Based Applications

The concepts of workflow-based applications are particularly popular in the area of
service oriented architectures (SOA). The Business Process Execution Language

 Using a Lightweight Workflow Engine in a Plugin-Based Product Line Architecture 205

(BPEL) supports the execution of processes that interact with web services [3]. There
are some similarities between SOA and plugin-based architectures: the plugin-based
application core is similar to a service requester that searches the plugin registry to
discover available services (provided by registered plugins). Once the core finds
them, it interacts with these service providers. In service orientation, there are no
guarantees that a service requester may find a particular service; this is the same for a
plugin-based application since there is no guarantee that a particular plugin will be
present. There are, however, some differences with SOA, since in SOA, service
providers and requesters may arrive or depart constantly, and such a high level of
dynamism is not currently present in plugin-based architectures.

6 Conclusions

This paper has presented a plugin-based software product line architecture where the
architecture embodies a lightweight workflow engine to facilitate plugin substi-
tutability and specific product development. This architecture is currently being
applied in the construction of a biomedical engineering research tool. It must be noted
that the ideas presented in this paper are not specific to plugin-based applications;
they can also be beneficial to the construction of standard component-based
applications.

Acknowledgments. The authors wish to acknowledge IBM for its financial support,
and the students who are participating in the project and who make it possible.

References

1. Bass, L. and Clements, P. and Kazman, R., “Software Architecture in Practice (2d
Edition),” Addison Wesley, 2003

2. Caporuscio, M. and Muccini, H. and Pelliccione, P. and Di Nisio, E. “Towards a Plugin-
based Implementation of Product Line Architectures,” unpublished paper found online at
http://se2c.uni.lu/tiki/se2c-bib_abstract.php?id=1948. Visited 01/06

3. Curbera, F. and Al., "Business Process Execution Language (BPEL) for Web Services,
Version 1.1," Online document at http://www-128.ibm.com/developerworks/library/
specification/ws-bpel/, last visited 01/06

4. The Eclipse Foundation, Official Eclipse Homepage at http://www.eclipse.org, last visited
01/2006.

5. Leymann, F. and Roller, D., "Workflow-based applications," IBM Systems Journal, Vol. 36,
No. 1, (pp. 102), 1997.

6. McAffer, J. and Lemieux, J-M., “Eclipse Rich Client Platform,” Eclipse Series, Addison
Wesley, 2006

7. Object Management Group (OMG), “CORBA Component Model, Version 3.0,” Online
document available at http://www.omg.org/technology/documents/formal/components.htm,
June 2002

8. Sun Microsystems, “Java Beans Specification, Version 1.01”, Available online at
http://java.sun.com/products/javabeans/, July 1997.

9. Clemens Szyperski, “Component Software: beyond object-oriented programming,” 2d
Edition, Addison-Wesley Professional, 2002.

	Introduction
	Plugin-Based Application Development
	Plugin-Based Applications and Eclipse
	The Structure of an Application Developed on Top of Eclipse
	The Problem of Scattered Flow of Control

	A Workflow-Based Product Line Architecture
	Workflow-Based Applications
	Using Workflows in a Plugin-Based Product Line Architecture

	Current Results and Future Work
	Related Work
	Component-Based Software Development
	Software Product Line Architectures
	Workflow-Based Applications

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

