
1

Compar ing JavaBeans and OSGi Towards an Integration of Two Complementary
Component Models.

Humberto Cervantes, Jean-Marie Favre

Laboratoire LSR Imag, 220 rue de la Chimie
Domaine Universitaire, BP 53, 38041 Grenoble, Cedex 9 France

Humberto.Cervantes@imag.fr, Jean-Marie.Favre@imag.fr

Abstract

In today's software engineering practices, building
applications from components is the ongoing trend. What
can be noticed however is that there really is not a clear
consensus about the definition of components, and instead
in the literature we find many definitions of what
components are. This renders a comparison between
component models difficult. However, it is possible to
compare different component models over a list of
characteristics that several authors agree that they should
be found in a component model. In this article, Sun’s
JavaBeans and the Open Services Gateway Initiative's
framework (OSGi) are compared. These are two
technologies that target very different types of
applications. Their study reveals, however, that both
technologies cover, at different levels, a set of important
features that characterize components. It also reveals that
these component models are in some ways
complementary. The paper concludes by giving a
proposal to integrate these two technologies to obtain a
more complete component model.

1. Introduction

Component Based Software Engineering (CBSE) is
one recent trend in the domain of Software Engineering
(SE). One major reason why this paradigm has emerged is
the need to build software by assembling reusable units,
or components, as opposed to building whole applications
from scratch.

Of the many component technologies that exist today,
we are more particularly interested in two Java-based
ones: Sun's JavaBeans [4] targeted towards the visual
assembly of non-distributed applications and the Open
Services Gateway Initiative (OSGi) [5] which is targeted
towards the deployment of services in platforms such as
home gateways.

These two technologies, which target very different

kinds of applications, might initially seem to have nothing
in common, however, a closer look reveals that some of
their characteristics are complementary. The goal of this
paper is 1) to do a comparison of both component

technologies and 2) to study a possible way of integrating
them.

Comparing component technologies can be a diffIcult

task mainly because there is not a clear definition of what
exactly components are. In order to establish a framework
for comparison, we have collected from a series of articles
[1,2,3], a list of relevant features of components.
According to these sources, components:

• Have clear and explicit boundary (Well specified
interface and explicit dependencies).

• Can be customized
• Can be assembled
• Are reusable
• Are units of substitution
• Are units of delivery and deployment
• Have certified properties

These features characterize a component model that
is, according to [2], "the set of component types, their
interfaces, and, additionally, a specification of the
allowable patterns of interaction among component
types." Finally, it is important to also take into account
the component framework which "provides a variety of
runtime services to support and enforce the component
model."

The rest of this article is structured as follows: section

2 describes the JavaBeans component model, section 3
describes OSGi. Section 4 makes a summary and
compares both component models, finally, section 5
concludes by describing a possible way to integrate both
models.

2. JavaBeans

2.1 Overview

The JavaBeans component model specification [4]
appeared in 1996 and introduced several concepts that
were designed to ease the task of visually assembling
applications out of components called JavaBeans.

2

JavaBeans components are standard Java classes that
either follow certain coding conventions to express the
main features of the component or that are accompanied
by a class (called BeanInfo) that provides this
information. Within a JavaBean we can find methods,
properties, event sources, and event sinks. Normally these
classes are serializable, the reason for this being that any
serialized instance can become a prototype [6] for other
instances. A prototype is the equivalent of a class in the
sense that it allows instances to be created from it.
Prototypes are also considered to be JavaBean
components.

The JavaBeans specification distinguishes two

different moments in the life cycle of a JavaBean
instance: "design-time" and "run-time." Design-time,
which normally takes place within a builder tool, occurs
when JavaBeans instances are configured and inter-
connected, forming an assembly which can then be stored.
During run-time, the assembly is executed as a standard
program.

Packaging is considered in the specification, however,

what is described is how to package the JavaBeans
components, not their assemblies. JavaBeans are
packaged as JAR files, a special file format that includes
among other things a manifest which is a special file
where information about contained JavaBeans is stored.

2.2 Component Features

We will now describe in more detail how the features
of components that were listed in the introduction are
expressed in the JavaBeans component model.

Clear and Explicit boundary:

The boundary of a JavaBean is clearly defined since
the naming patterns used to write its interface give a good
definition of the properties, methods, event sources and
event sinks that the JavaBean implements.

The dependencies of a JavaBean are, however, not

described thoroughly. These dependencies can be divided
in two different categories: the first one concerns the
dependencies towards the Java runtime and imported
packages, which are not described at all, and the second
category includes the dependencies of a JavaBean
towards other JavaBeans, classes or resources. The latter
dependencies can be optionally described in the manifest
of the JAR file but only if they take place within the same
JAR file that contains the JavaBean (Fig.1).

More specifically, there are two ways in which a

JavaBean can depend on another JavaBean:

a) A JavaBean contains an instance of another
JavaBean, effectively creating a containment
relationship. This occurs when there is a
Beans.instantiate() statement inside of the code
of the JavaBean.

b) A JavaBean contains a reference to another
JavaBean, thus creating an association
relationship. This reference is set when the
assembly of JavaBeans is created.

Name : somepackage/CustomizedBean.ser
Java-Bean : True
Depends-On : somepackage/myIcon.gif
Depends-On : somepackage/CustomizedBean.class
Depends-On : anotherpackage/AnotherBean.class

Figure 1.

Customizability:

Customizing a JavaBean means changing the values of
its properties. Properties in the JavaBeans component
model are values that can be read and changed through
getter and setter methods (this makes reference to the
naming pattern that these methods follow which is that to
get a property the method should be called
get<PropertyName> and to set the value of a property, the
method should be called set<PropertyName>).

Customization in JavaBeans can be done either at the

component level, if the properties of a prototype are
changed, or at the instance level, if within an assembly the
properties of a particular instance are set. Customization
is an activity that normally takes place during design-
time.

To be able to customize a JavaBean, information about

its characteristics must be obtained. This information can
be obtained in two different ways. The first one, called
introspection, automatically discovers features of a
JavaBean from the getter and setter methods it exposes.
This information can then be used for example to build a
configuration panel that allows properties to be set in an
interactive way. The second mechanism consists in using
the information provided by a companion class to the
JavaBean called a BeanInfo. These companion classes can
also provide methods that allow properties to be set in
more particular ways, eventually by displaying complete
graphical editors for the properties. Companion classes to
JavaBeans are identified by naming conventions (the
name of the JavaBean plus the BeanInfo suffix).

Can be assembled:

As we have described before, JavaBeans are designed
to be instantiated and then assembled, so this

3

characteristic is fundamental in this component model.
Assembly is meant to be realized by a third party
(typically a builder tool) that will call the methods of the
JavaBeans by passing them either values of properties or
references to other JavaBeans. We recall however that the
assembly is not meant to become a JavaBean itself, it is
the responsibility of the third party to store it so that it can
be rebuilt later. Currently the Long Term Persistence
Schema for JavaBeans allows assemblies of Java Beans to
be stored in a standard XML format [7].

It must be noted that at the implementation level,

assembly and customization in the JavaBeans component
model might be confused. The reason for this is that both
activities are done by calling getter and setter methods on
the JavaBeans.

Reusability:

JavaBeans are meant to be reusable components, since
their instances can be used to build many different kinds
of assemblies. The limitation, however, is that assemblies
cannot become themselves JavaBeans to allow for further
reuse.

Units of substitution:

Substitution makes reference to the possibility of
replacement of one component by another. We have
previously described that relationships between
JavaBeans can be of two different kinds: containment and
association. Substituting a component that is contained is
different than substituting one that is associated.

When a JavaBean contains another one, normally their

relationship is buried inside of its source code. In Figure 2
there is an example of a contained bean. Inside of the
constructor of the MyBean class, an instance of a
ContainedBean component is created. Substitution in
this case can only take place if there are changes at the
physical level, for example a change in the classpath or in
the JAR that exports the JavaBeans, the consequence of
this will be that when MyBean is instantiated, the
substituted ContainedBean will be loaded. It is
important to notice that this type of substitution implies
that the bean that substitutes must have exactly the same
name that the one it replaces, meaning essentially that it is
a different version.

The second possibility of substitution can occur

between two JavaBeans that are associated. In figure 2 we
can see this situation occuring for the AssociatedBean.
This association normally will be done by a third party
that will give a reference of an AssociatedBean to
MyBean. Substitution can take place if the third party
gives a reference to any subclass of AssociatedBean.

Another difference with respect to containment is that this
kind of substitutions can take place at any time during
execution, while the first one only takes place during
instantiation.

class MyBean implements Serializable
{
 private ContainedBean cb;
 transient private AssociatedBean ab;

 MyBean()
 {
 cb=(ContainedBean)Beans.instantiate(

"mybeans.ContainedBean");
 }

 public void setAssociatedBean(AssociatedBean newbean)
 {
 ab=newbean;
 }

 public AssociatedBean getAssociatedBean()
 {
 return ab;
 }
}

Figure 2.

Units of delivery and deployment:

In the JavaBeans component model, the unit of
delivery is the JAR file, not the JavaBean itself. Since a
JAR file can contain one or more JavaBeans, what is
distributed is a collection of components.

Deployment is not specifically treated in the

JavaBeans specification, however, to deploy an
application built out of JavaBean components, the
collection of JAR files that contain the JavaBeans must be
installed in an accessible location so that the JavaBeans
can be loaded when the assemblies are recreated.

Certified Properties.

A component with certified properties will have a

predictable behavior. In the JavaBean component model,
however, there is no way to specify the behavior of a
particular component.

2.3 Component Framework

In the JavaBeans component model, there is a
minimal component framework provided by a class called
java.beans.Beans. The basic services provided by this
class include instantiation and resource loading. An
extension to the original specification [10] further
introduced the concept of BeanContexts as a way to
provide services to the JavaBean instances. BeanContexts

4

allow JavaBeans instances to be organized in a
hierarchical structure and act as service providers for
those instances.

2.4 Summary

We have described the JavaBeans component model as
a model that distinguishes two different moments in the
lifecylce of components: design-time and run-time. Since
this component model is targeted towards the visual
assembly of applications, it makes a strong emphasis on
configuration aspects. Packaging is treated altough only in
a limited way.

The JavaBeans component model covers te set of
features that characterize components with the exception
of certified properties. It is important to notice that not all
of the characteristics are covered by the same entity, some
belong to the JavaBean while others belong to the JAR
files that export them.

3. OSGi

3.1 Overview

The Open Services Gateway Initiative created the
specification of the OSGi services platform to ease the
deployment and management of services in a coordinated
way [5].

OSGi defines a non-distributed framework where

units of deployment called bundles are installed and
managed. A bundle is installed from a JAR file and is
identified by a unique number and the location of the file
from where it is installed. It must be noted that in the
framework there cannot be more than one bundle installed
from the same location. Management of the bundles
includes starting, stopping, updating and removing them.
Every bundle inside the framework has a state associated
with it which can take the following values:
INSTALLED, RESOLVED, STARTING, ACTIVE,
STOPPING or UNINSTALLED. The state of the
bundles that are installed in the framework is persistent,
meaning that it is restored after the framework is
shutdown and restarted.

A JAR file exports a single bundle and contains a

manifest file where information about the bundle is
stored. This information includes the location of a class
called the activator. This class plays a very important
role, since it is called when the installed bundle is started
or stopped and also receives a reference to the framework
that allows the bundle to interact with it. The manifest
also contains other information such as package

dependencies, used and provided services and general
information about the bundle.

Bundles contain services which are, according to the

specification, the components from which applications are
built. The services that a bundle contains can be registered
or unregistered in a framework registry. Every service is
registered with its name (a Java interface) and a set of
properties of type <value,pair>. A bundle can send a
request to the framework to obtain a service by providing
a filter in an LDAP syntax, this query might eventually
return a set of candidates.

A very important aspect of the paradigm of OSGi is

that services may appear or disappear at any time during
the execution of an application, as a consequence of the
management of the bundles. This means that an
application, as a set of bundles connected through
services, is in constant evolution. This also means that
there is not a static assembly described anywhere,
services are connected or disconnected dynamically, and
the code inside of the Bundles must be prepared to handle
this situation.

3.2 Component Features

We will now study the way the features of component
models are expressed in OSGi.

Clear boundary and Dependencies:

The boundary of a bundle is clearly defined since a
bundle is completely contained within its JAR file. The
dependencies of the bundle are divided into three different
types: package dependencies, service dependencies and
runtime dependencies.

A bundle can import or export source code in the form

of a package that may have a version number. This
mechanism allows the bundles to access or to give access
to the code of the service interfaces, so that it is not
necessary to include this code in every bundle. It is also
used to load or share library code. These dependencies are
clearly specified in the manifest of the bundle since they
must be resolved in order to allow the bundle to be
started, hence the difference between the INSTALLED
and the RESOLVED state.

Bundle to service dependencies are not handled by the

framework, they can be declared in the manifest file but
only for informative purposes. There is also no way to
express service to service dependencies.

Concerning runtime dependencies, they can be

described in the manifest for information purposes,
moreover, the OSGi framework allows a bundle to query

5

it for the version of the Java runtime environment where it
is being executed so that eventually it can act depending
on this information.

Some dependencies cannot be expressed in OSGi, in
particular, those concerning the standard Java classpath or
the /lib/ext directory. These ways of locating code should
be avoided.

Customizability:

Services can be customized by their clients if they
implement a particular interface. However the changes
made upon them have a repercussion on all of the clients
of the service, since services are shared. The state of the
service can be rendered persistent into the installed
Bundle.

There is no standard mechanism to configure bundles

other than through services.

Can be assembled:

As we described previously, within the OSGi
framework, the applications are in constant evolution.
These applications are built from bundles connected
through services, but the structure of the application is not
a static one since services come and go at different
moments during execution.

Through the package dependencies, bundles are

connected between themselves in a static way. However,
it is not possible to specify that a bundle imports the
packages from some particular bundle, what can be
expressed is only that a bundle imports packages and the
framework is charged to decide the bundle from where
they will be imported.

Reusability:

Services by definition are meant to be reusable, since
they can be used by many different clients. Any bundle
can become client of a service if the service is available at
the moment it requests it.

Bundles are reusable units too, since they can be

installed over several frameworks.

Units of substitution:

In OSGi, substitution is an important characteristic
which takes place during the execution of the application.
Substitution can take place either in services or in
bundles. A service can be substituted by another one if the
latter implements the same interface and if the properties
that the client requests for the service are the same in both

services. This is the reason why when the framework is
queried for a particular service, it can return a collection
of services instead of a unique answer. If two services
implement the same interface and the properties requested
in the filter are found on both services, they can be
considered as being equivalent, and it is up to the
requesting client to choose the one it will use.

Bundles are also units of substitution, since a bundle

can be changed by another one that exports equivalent
services and packages. Bundles can be updated, and this
means that they are replaced by a different version of
themselves.

Units of delivery and deployment:

The JAR files that contain the bundles are the units of
delivery in OSGi. The framework allows these files to be
installed from a remote location. These fi les are
considered to be units of deployment too, since there is
not a standard way to distribute and deploy several
bundles at once as a high level unit, l ike an assembly of
bundles.

Certified Properties.

In OSGi, services are characterized by a set of

properties but apart from this there is no way to certify
that a service will comply with a particular behaviour.

3.3 Component Framework

The OSGi framework provides methods that allow the

bundles to request and to register services. It also allows
bundles to register themselves as listeners to different
types of events : service events (registering /
unregistering), bundle events (change in the state of a
bundle) and framework events (start/stop). The
framework also provides bundles with methods that allow
them to manage the framework, altough this may be
restricted by setting permissions. Finally, the framework
allows the bundles to save their state by providing them
access to a file.

3.4 Summary

We have described OSGi which can be considered as a
component model since the features of components are
covered either by the bundles or by the services. It must
be noted that OSGi applications are not described
statically and they evolve along with the services that are
registered or unregistered in the framework.

Packaging, deployment and delivery are essential

aspects of OSGi, and the framework provides powerful
mechanisms to manage the bundles that are installed on it.

6

4. Compar ing OSGi and JavaBeans

4.1 Differences

The first important difference between OSGi and
JavaBeans, is that OSGi explicitly defines a framework
that manages both the units of distribution that are the
bundles and the services they export. In JavaBeans, it is
mostly the Java runtime and the Beans class that are the
framework for the components, so JARs are installed
following the conventions for standard Java classes. This,
however, has limitations since versioning is treated poorly
in Java. Another clear advantage of OSGi is that the
framework provides powerful mechanisms to allow for
management of the Bundles, for example to update or
install from a remote location, something that is not
available for the JavaBeans.

Among the differences, we notice that in OSGi

assemblies are not static, connections between bundles
occur depending on the availability of services.

The concept of service as an object that can be

obtained by querying the framework through a set of
properties has no exact equivalent in the JavaBeans
component model, although something that approaches it
was introduced in the extension to the original
specification [10] where the concept of BeanContexts was
introduced. BeanContexts allow JavaBeans instances that
are registered within a BundleContext to ask it for
services. In this case the context acts in a similar way to
the OSGi framework, however, requests and registration
are done in a simpler way. From this point of view
JavaBeans instances could be compared to Bundles,
although Bundles exist as singletons in the OSGi
framework, and the latter is the only context where all the
Bundles reside.

4.2 Similar ities

We will now focus on the similarities of these two
component models. One common aspect is that in both
component models there are two clearly different entities
that possess part of the component characteristics for the
model: In JavaBeans these two entities are JavaBeans and
JAR files, and in OSGi they are the services and the
bundles. We must point out that the existence of this kind
of separation is not specific to the component models that
we have studied in this paper, we can find a similar
entities in .NET [8] (Assemblies and Components), in EJB
[9] (JARs and EJB) and in other models. It is interesting
to notice that in each of the component models, one of the
two entities, that is JARs and bundles, is particularly
oriented to be a unit for deployment.

4.3 Summary

In the previous section we have discussed and
compared JavaBeans and OSGi. We have concluded that
both can be considered as component models, since they
support what we considered as common features of
components.

We must note though that even if in both component

models we can find similar aspects, some of them may be
better treated in one component model than in the other,
the prime example for this is the units of distribution in
OSGi that are treated in a much complete way than the
JARs loaded through the standard classloader mechanism
of Java. In a similar way, assemblies are treated in a more
complete way in JavaBeans.

5. Conclusion

In this paper we have studied JavaBeans and OSGi to
find if they supported a set of characteristics that are
found on component models. We concluded that in both
component models we find all of the characteristics that
we described on section 1 with the exception of certified
properties which are only treated very superficially in
OSGi. Among the similarities of both component models,
we found that two main entities existed in each of them:
one that is more focused to the distribution and
deployment and another one that is more oriented on the
assembly of components. One of our conclusions is that if
we consider the set of characteristics described in section
1, it is not possible to consider each individual entity as
being components, but that rather that the features of
components are distributed over the two kinds of entities.
This can be summarized by saying that JavaBeans alone
cannot be considered completely as components if we do
not speak of the JARs that are the units in which they are
distributed.

A second conclusion is that although in both models

we find units of distribution, in the case of OSGi, these
units are defined and managed in a more complete way
than in JavaBeans. On the other side, some aspects of
JavaBeans are not found on OSGi. We think that it is
possible to integrate both component models so that the
best features of each one are used to build a common
component model. To do so we can:

• Use bundles as distribution units that contain
JavaBeans.

• Make these bundles export some particular
service, such as a BeanFactoryService that
allows for the creation of instances of the
JavaBeans they export. The OSGi registry would

7

then be used to lookup for factories of
components.

• Give JavaBeans access to the OSGi framework,
so that they can query for services in a more
complete way than what is available today
through the BundleContext.

The benefits of an eventual integration of these two

technologies are various. The most immediate advantages
are that by doing so we would benefit from the OSGi
framework mechanisms that manage the distribution units
in a local or remote way. The other advantage is that it
would be possible to build applications out of static
assemblies of components, something that is currently not
specified in OSGi.

We are currently testing this approach and our current
results are encouraging. Due to a lack of space we have
limited ourselves to just citing the main ideas that we are
putting into place to reach the integration of these two
component models. More information can be found at the
following web address:

 http://www-adele.imag.fr/BEANOME

Finally we would like to thank Dr. Richard S. Hall for

his reviews and support.

Bibliography

[1] Bass, Buhman, Comella-Dorda, Long, Robert,
Seacord, Wallnau. “Volume I: Market Assessment of
Component Based Software Engineering.” Technical
Report CMU/SEI-2001-TN-007, May 2000

[2] Bachman, Bass, Buhman, Comella-Dorda, Long,
Robert, Seacord and Wallnau “Volume II: Technical

Concepts of Component Based Software Enginnering” ,
Technical Report CMU/SEI-2000-TR-008, May 2000

[3] C.Szyperski, Cuno Pfister : Why Objects Are Not
Enough, Proceedings, First International Component
Users Conference, july 1996

[4] Sun Microsystems : “Java Beans Specification” ,
version 1.0.1, 1997 http://java.sun.com/beans

[5] OSGi service gateway specification, version 1.0, May
2000, http://www.osgi.org

[6] E. Gamma et al., “Design Patterns - Elements of
Reusable Object-Oriented Software” , Addison Wesley,
1995

[7] Sun Microsystems, “Long Term Persistence of Java
Beans Components”
http://java.sun.com/products/jfc/tsc/articles/persistence3/i
ndex.html

[8] Microsoft, “The .NET Framework”
 http://msdn.microsoft.com

[9] Nicholas Kassem and the Enterprise Team,
“Designing Enterprise Applications with the Java 2
Platform, Enterprise Edition.” , Version 1.0.1, October
2000

[10] Sun Microsystems, “Extensible Runtime
Containment and Server Protocol for JavaBeans”
Version 1.0 December 3, 1998

