
A MDA tool for the development of service-oriented component-based applications

Nestor Riba, Humberto Cervantes
Universidad Autonoma Metropolitana-Iztapalapa (UAM-I),

nestor_arz@yahoo.com, hcm@xanum.uam.mx

Abstract

This paper presents a process for the development of a
Model-Driven Architecture (MDA) tool for the
construction of service-oriented component-based
applications. The process is used in the construction of a
tool for one particular domain, but can be easily
adapted to other domains. The tool in itself simplifies
the development of components using a MDA approach,
in which modeling is at the core of the development
activities. After components are modeled, the tool
validates the correctness of the design of the model
based in a specification that is embedded inside the tool.
Once the model has been validated, the tool is capable
of creating the skeletons of the code for the components
which are then executed inside the OSGi platform.

1. Introduction

Component orientation is a software development ap-
proach where applications are built through the assembly
of reusable software building blocks called components.
Generally, the construction of component-based solutions
is achieved by assembling components that are 'physical-
ly' available at the time the application is built. The
availability of components at the time of assembly is,
however, not always possible or even desirable. Certain
kind of component-based applications, such as plugin-
based ones, allow components that are unavailable at the
time of application construction to be integrated into the
application later into its life-cycle (for example after it
has been installed). One particular variety of component
models push this situation further, as they allow the com-
ponents to be introduced or removed from the application
dynamically (i.e. at run-time). These component models
are useful for constructing applications whose architec-
ture needs to evolve constantly as they execute. Support-
ing this dynamic availability of components requires,
however, some kind of architectural adaptation mecha-
nism to be present in the execution environment so that
connectors can be modified automatically upon the ar-
rival or removal of components.

One particular variety of component model which sup-
ports dynamic availability is described in the Declarative
Services (DS) chapter of the OSGi platform specification
[7]. The DS component model is a service-oriented com-
ponent model based on the concepts introduced by its
precursor, called the Service Binder, which is discussed
in [1]. In both these models, components are bound using
a service-oriented interaction pattern, and their structure
is described declaratively (thus the name of the Declara-
tive Services). Components are service providers and
their services can be required by other components in or-
der to work properly. In these models, the component's
structure includes simple adaptation rules which are as-
sociated to the component's dependencies. At run-time
these adaptation rules are used by an execution environ-
ment to manage the connections between the compo-
nents. In this component model, the support of dynamism
can be seen as a non-functional aspect which is managed
by the container. This is similar way to the support that
exists in other component models to non-functional as-
pects such as persistence, security or transactions.

This approach to supporting dynamic availability is of
great help to component developers who can focus on
writing application logic and are relieved from the bur-
den of writing adaptation logic necessary to cope with
dynamism. Developers, however, must still be careful
when writing the component descriptors along with the
adaptation rules. These descriptors can be difficult to
write as they must map precisely to classes that imple-
ment the components, and they must also respect several
constraints which can be difficult to remember. In addi-
tion to this, there are ongoing efforts to extend these
component models and to port them to platforms other
than OSGi [6], which is the platform in which they are
currently implemented. This situation will make it more
difficult for developers to write more complex descriptors
and to port their components to other platforms in the fu-
ture.

This paper presents ongoing work that solves these
problems by proposing a development tool built follow-
ing an Model-Driven Architecture (MDA) approach. In
MDA, the construction of applications focuses on the
definition of platform-independent models which are fur-

ther used to generate platform-specific models and later,
code automatically. The proposed tool, which currently
focuses on the Platform Specific Model (PSM) to code
transformation, provides a way to develop components
visually as models. The tool also verifies the semantics of
the models and furthermore it generates component
skeleton code for a specific platform automatically. Using
an MDA approach in the construction of this tool allows
it to be adjusted easily with respect to modifications in
the component model. Finally, the tool provides a layer
of isolation from the particular technology in which the
components are implemented.

Another important aspect of this paper is to present
the lightweight process defined for the development of
this MDA tool, this process was designed to be easily
adapted in by any software development organization in
order to create customized MDA tools for particular do-
mains.

The structure of the paper is as follows: section 2 dis-
cusses the concepts behind service-oriented component
models and gives more detail about the problems that
motivate this work, section 3 describes the tool construc-
tion process, section 4 presents current results, section 5
presents related work and finally, section 6 concludes the
paper.

2. Service-oriented component based
application development

This section discusses the process of developing ser-
vice-oriented component based applications and details
the issues faced by some existing models.

2.1. Service-oriented component models

Service-oriented component models, such as the Ser-
vice Binder [1] or the Declarative Services [7], support
the introduction and removal of components from the ap-
plication at run-time (i.e. dynamic availability). To do so,
they introduce on one hand concepts from service-orien-
tation, and on the other, adaptation rules and mecha-
nisms into the component model and its execution envi-
ronment. In these models, components play the role of

both service providers and requesters, and the interfaces
they implement are used as service descriptions which
are published in a service registry at runtime. When com-
ponents are introduced or removed from the execution
environment, their services are also introduced or re-
moved from the service registry respectively. The execu-
tion environment monitors changes in the service registry
and adapts components that have dependencies on partic-
ular services when changes occur (see figure 1). These
changes include the introduction, change, or removal of
services in the service registry. The way that components
are adapted varies according to simple rules that are de-
fined at the component dependency level in the compo-
nent descriptor. These rules define several behaviors in-
cluding: how many connections can be created at run-
time with respect to components that provide a particular
service (cardinality), whether the component with the de-
pendency supports dynamic changes in the connections
(policy), and also which particular components that pro-
vide the required service can be connected (filter). Figure
2 shows an example from a Declarative Services compo-
nent descriptor, which is written in XML. This particular
component provides an English spell check service via an
interface. The component can connected to one or more
components that provide the dictionary service that it re-
quires (cardinality = 1..n), and it supports dynamic modi-
fication of the connections towards the dictionary ser-
vices (policy = dynamic). Furthermore, the dictionary
services from any provider can be used by the spell
checker (provider=*), and once they are located, their
references are bound to the component using the bind
and unbind methods defined in its implementation class.

2.2. Current issues

The declarative approach promoted by the aforemen-
tioned service-oriented component models greatly simpli-
fies development tasks. Without this support, developers
must face the complexities of writing service manage-
ment and adaptation logic in addition to application log-
ic. It must be noted than the former code can frequently

<?xml version="1.0" encoding="UTF-8"?>
<component name="example.component">
 <implementation class="mx.uam.examples.components.ComponentImpl"/>
 <property name="language" value="english"/>
 <service>
 <provide interface="mx.uam.examples.services.SpellCheckService"/>
 </service>
 <reference name="dictionaries"
 interface="mx.uam.examples.services.EnglishDictionaryService"
 cardinality="1..n"
 policy="dynamic"
 target="(provider=*)"
 bind="setDictionary"
 unbind="unsetDictionary"
 />
</component>

Figure 2: An example of a component descriptor for the Declarative
Services

Figure 1: Service-oriented component model

S

name
cardinality
policy
filter

Component
Instance

Adaptation
logic

Validation

Creation

Execution

ValidateInvalidate

Re-configure

Destruction

Service
registry
notifications

Lookups

end up being more complex than the latter. To use these
component models, however, developers must still be
careful when creating component descriptors, as the de-
scriptors must map correctly to the code that implements
the component and, in addition, the descriptor must re-
spect several constraints. Figure 3 shows an excerpt from
the Declarative Services specification which gives an
idea of the kind of constraints that the developers must
follow when writing the component descriptors. This ex-
cerpt specifies that a delayed component (a component
that is only activated when is used for the first time) can-
not be immediate (a component that is activated at the
moment it is installed). The specification contains several
similar restrictions which must all be taken into account
when developing components.

The difficulties associated to writing component de-
scriptors are likely to increase if the component model is
modified and more characteristics and constraints are
added to the component model. This is likely to happen
as the OSGi specification is constantly being updated.
This could also occur, for example, if additional types of
connections, such as event-based, were to be supported by
the components (this area of research is currently being
explored in a project where one of the authors is partici-
pating). Finally, the aforementioned models are also
tightly tied to a particular implementation platform,
which in this case is OSGi [6]. The concepts behind ser-
vice-oriented component models are, however, indepen-
dent of this platform and it would be desirable to reduce
the coupling to this specific service platform and to use
them in a different one.

3. MDA tool construction process

Model Driven Architecture (MDA) is a software de-
velopment approach which promotes the use of models as
the fundamental artifacts during the software develop-
ment life-cycle. In MDA, an application is initially mod-
eled independently from the particular platform in which
it will be implemented. Platform-independent models
(PIMs) are subsequently transformed into other models
that are closer to a specific platform. At the end of this
transformation process, a platform-specific model (PSM)
is obtained [3]. This model can then be used to easily
generate the application's code. One goal of MDA is to

automate model transformations as much as possible, and
to achieve this, this approach promotes an extensive use
of tools to support the developers.

An essential advantage of using the MDA approach is
that the developers only have to worry about the model-
ing of essential application elements, typically the ones
related with the business logic. The supporting tools then
deal with all the technical and architectural aspects that
will be modeled and transformed into code. This ap-
proach provides many benefits as it accelerates both the
development and the maintenance processes. When new
functionalities are required, they must simply be intro-
duced at the model level, and the application can be
quickly re-generated.

The issues associated to the development of service-
oriented components which were discussed in the previ-
ous section can be solved through the construction of a
tool that follows an MDA approach. Such tool allows de-
velopers to build components by modeling them visually.
These models can then be validated to verify them re-
spect the constraints of the component model, and fur-
thermore the models can be used to generate the compo-
nent's code and descriptors automatically.

The process we propose for building such a tool is de-
picted in figure 4. The tasks depicted in this process can
be grouped into two main groups of activities. The first
one is the definition of a visual vocabulary to model ap-
plications. The definition of the vocabulary also includes
the definition of several model validation constraints.
The second group of activities concerns the development
of the MDA tool based on the previously developed vo-
cabulary. The activities include: (1) the development of a
visual editor that implements the vocabulary and its con-
straints, (2) the definition of transformation rules which
are used by the tool to convert the platform-independent
models into platform-specific ones and into code, and fi-
nally (3), the implementation of the transformation rules
in order to create a code generator. It must be noted that
the process depicted is generic as it can be followed to

Figure 4: MDA tools creation process

Figure 3: Fragment of the Declarative Services specification
(Section 112.2.3, p. 281)

MODELING
LANGUAGE
DEFINITION

DEVELOPMENT
OF THE MDA

TOOL

UML PROFILE
DEFINITION

INCLUDING OCL
CONSTRAINTS

DEVELOPMENT OF
A VISUAL EDITOR

THAT IMPLEMENTS
THE UML PROFILE

TRANSFORMATION
RULES DEFINITION
FROM MODEL TO

CODE

DEVELOPMENT OF A
CODE GENERATOR
THAT IMPLEMENTS

THE TRANFORMATION
RULES

built different kinds of MDA tools. The activities of the
process are discussed in detail in the following sections.

3.1 Definition of a modeling vocabulary for the
component model

The Unified Modeling Language (UML), which is the
most extended modeling language in use today, provides
a standard way to model many aspects associated to soft-
ware development. In the case of some particular do-
mains and applications, however, a more specific model-
ing vocabulary than the one provided by standard UML
is needed. This vocabulary can be created by defining a
UML profile [2]. A UML profile extends the standard
UML notation to a particular domain or platform by
defining new elements derived from the basic UML ones
(which include classes, associations, attributes, etc). The
use of a UML profile is favored over the use of a Domain
Specific Language (DSL) since UML is a widely accept-
ed modeling language.

The profile is created using UML's extension mecha-
nisms which are stereotypes, tagged values and con-
straints. Stereotypes are used to define new basic ele-
ments, tagged values are used to define attributes of an
element or stereotype, and constraints are used to specify
semantics and conditions associated to the elements of
the model used to validate it.

Figure 5 shows the elements of the UML profile for
the Declarative Services component model, which was
obtained from the DS specification. The figure shows the
Reference, Service, Component, Provide, Declares and
Property stereotypes. These stereotypes are used to repre-
sent essential elements of the model, in particular, the
figure illustrates the fact that a Component can have a
Reference to a Service and at the same time that this Ser-
vice is Provided by another Component. In addition, a
Component can Declare some Properties necessary to
configure its behavior or to distinguish its services from
the ones provided by other components.

Each stereotype has its own attributes (or tagged val-
ues) that represent the properties that the stereotype can
have. For example a component has a boolean attribute
labeled immediate that indicates if the component will be
activated at the moment it is installed. Other attributes
represent many other component behaviors or character-
istics as specified by the Declarative Service Specifica-
tion [7].

Once the UML profile has been defined, it is necessary
to provide a means to validate the semantic correctness of
models built using the profile. This is achieved by com-
plementing the UML profile with constraints written in a
language called Object Constraint Language (OCL) [8].
This language is part of the UML 2.0 specification. With

respect to the service-oriented component model, these
constraints are obtained from textual descriptions, such
as the specification fragment from DS presented in figure
3.

The definition of the OCL constraints is essential be-
cause these constraints are later needed to support the au-
tomatic validation of the semantics of the models. This
frees the developers of the burden of learning and re-
membering all the rules defined in the component model
specification and allows them to focus their effort in de-
veloping the business logic. Figure 5 shows a simple
OCL rule used to validate the rule described in the frag-
ment of the specification of figure 3. Due to lack of
space, the profile does not show all of the OCL con-
straints associated to it.

3.2 Implementation of the UML profile in a visual
editor.

After defining the visual modeling language, the next
step in the process is the construction of a visual editor.
This editor uses the profile to support the creation of
models of components and is capable of validating the
models using the constraints written in OCL. In order to
accomplish the objective of creating a lightweight pro-
cess that can be easily followed to create MDA tools by
any software development organization, a framework that
accelerates the development process of the visual editor
was used.

The framework that was used for the creation of the
editor is GMF (www.eclipse.org/gmf). It was chosen be-
cause it is open source, based on standards of the OMG,
and integrated with the Eclipse platform tool. GMF can
be seen as an MDA tool for the creation of visual editors.
GMF works with various models, each one representing
distinct aspects of the editor. One important model of

Figure 5: UML profile for Declarative Services (not all OCL
rules are shown)

DeclarativeServices
<<profile>>

Class
<<metaclass>>

Association
<<metaclass>>

Component
<<stereotype>>

+name: String
+enabled: Boolean
+factory: String
+immediate: Boolean
+delayed: Boolean
+implementationClass: String
+serviceFactory: Boolean

Reference
<<stereotype>>

+cardinality: Cardinality
+policy: Policy
+name: String
+targetFilter: String
+bind: String
+unbind: String

Types
<<enumeration>>

+String
+Long
+Double
+Float
+Integer
+Byte
+Char
+Boolean
+Short

Cardinality
<<enumeration>>

+0..1
+0..n
+1..1
+1..n

Policy
<<enumeration>>

+static
+dynamic

<<BaseElement>>

Properties
<<stereotype>>

+entry: String

Property
<<stereotype>>

+name: String
+value: String
+type: Types
+body: String

Service
<<stereotype>>

+interface: String

<<BaseElement>>

<<BaseElement>>

<<BaseElement>>

<<BaseElement>>

Declares
<<stereotype>>

<<BaseElement>>

Provide
<<stereotype>>

<<BaseElement>>

OCL: immediate = true
implies
delayed=false

OCL:
self.connection ->
exists(participant.isStereotyped('Component'))
and
self.connection->
exists(participant.isStereotyped('Service'))

GMF is the called domain model, which is in fact the
meta-model of the visual language, which corresponds
directly to the UML profile. Other models of GMF repre-
sent the graphical and tooling aspects of the visual editor.
The developer who wants to construct a visual editor has
to create the different models required by GMF, and
GMF generates the code for the editor. The time required
develop a visual editor depends of the complexity of the
meta-model, but it is generally much shorter than the de-
velopment of a specific visual editor from scratch.

One particular characteristic of GMF which is helpful
for the development of a complete MDA solution is that
it accepts, inside one of his internal models, the defini-
tion of the OCL constraints. As a result, the visual editor
can validate the model against the constraints defined in
the profile. The construction of the visual editor repre-
sents the first step in the construction of the MDA tool.
The visual editor allows developers to model components
visually and furthermore it validates the models automat-
ically against the constraints defined in the component
model's specification.

3.3 Establishing and implementing the transforma-
tion rules

Once the model is created and validated using the vi-
sual editor, the next step is to transform it into another
more detailed platform specific model or directly into
code. To do this, it is necessary to indicate how the trans-
formation will take place by defining which elements of
one model correspond to which elements of the code.

The transformation rules specify which part of the de-
scriptor or piece of code will be generated from a particu-
lar element of the model. Figure 6 shows an example of a
transformation rule which is used to generate the compo-
nent descriptor from a visual model of the component. In
the model, the Component and Service stereotypes are
displayed using an iconic representation. Each element of
the model has some attributes that will be used in the
transformation process. For this example, the name of
the component is used to generate a fragment of code in
the XML descriptor of the component. To express which
property of the element will be used in the code, a dot
syntax is used. In this example, Component.name, which
indicates that the value given by the user to the property
name of the element Component, will be used in the gen-
erated code. The Component has an attribute called im-
mediate, that in the case of being true results in a particu-
lar fragment of code to be included in the generated code
of the XML component descriptor. The association la-
beled PROVIDE between a Service an a Component
specifies that a Component will provide the Service, this
element will also be included in the XML descriptor.

Again due to lack of space only these transformation
rules are shown, but many more are necessary to success-
fully transform all the elements of the model.

The XML schema of the descriptor and the code ele-
ments are described in the DS specification. However, as
in the case of the constraints defined by the specification,
it is not necessary for the developer to need to know them
in detail because they will be generated by the tool.

3.3 Implementation of the transformation rules.

To accelerate the process of development of a com-
plete solution that can be easily connected to the previ-
ously described visual editor, an open source tool was
also selected for the last activity: the development of the
code generator.

The chosen tool is Acceleo (www.acceleo.org), an easy
to use open source tool that takes a model in XMI format
and transforms it into code or other models by defining a
series of templates that contain the transformation rules
previously defined.

Coupling the visual editor to the code generation sub-
system results in a complete MDA tool that supports the
component development process from modeling to code
generation.

4. Current results.

This section presents the resulting tool and discusses
how the same tool construction process was used to gen-
erate a different tool.

Figure 6: From model to code

MODEL

TRANSFORMATION RULES

<?xml version="1.0" encoding="UTF-8"?>
<component
 name="ComponentExample"
 immediate="true"
>
 <service>
 <provide interface="mx.izt.uam.ServiceProvided"/>
 </service>
</component>

XML
CODE

<?xml version="1.0" encoding="UTF-8"?>
<component
 name="Component.name"
 immediate="true"

>

<service>
 <provide interface="Service.interface"/>
</service>

ComponentExample

PROVIDE

ServiceProvided

immediate=true

4.1 Component development MDA tool.

The resulting MDA component development tool is
delivered as an Eclipse plugin (see figure 7). Once
launched, the component development tool displays a
graphical editor where components are modeled visually
using the familiar component representation. The proper-
ties of the graphical elements can be configured using
property sheets. Once a component is modeled, the tool
verifies the correctness of the model and warns the devel-
oper of any constraint that is not respected. After the
model of a component has been validated, the developer
can request the tool to generate a DS component auto-
matically. The tool generates the component descriptor
along with skeletons of support classes (such as the com-
ponent implementation and service interfaces).

Through the use of this tool, the component develop-
er's only tasks are to model the components and to write
the business logic associated to the component imple-
mentations. This approach, which can be seen as a PSM
to code transformation in the context of MDA, signifi-
cantly accelerates component development when com-
pared to the traditional approach where developers must
write the component descriptor and support classes man-

ually. Furthermore it also reduces the occurrence of er-
rors due to omissions or mistakes when writing the com-
ponent descriptors.

Figure 8 shows a model that violates the constraint of
the fragment of DS specification shown in figure 3, a val-
ue of 'true' is assigned to the immediate property of the
component and a value of 'true' is also assigned to the de-
layed property of the component. The figure shows how
the tool highlights the problem of the model and indi-
cates where the problem resides.

4.2 Testing of our proposed MDA tool process
development.

To evaluate the flexibility of the approach, two more
MDA tools were developed to support other different
types of component connections, in particular connec-
tions that support a producer-consumer approach as de-
fined by the WireAdmin service section of the OSGi
specification [7]. The creation of this new MDA tools
was performed in a few days following the complete pro-
cess described in figure 4 and using GMF and Acceleo as
supporting tools.

5. Related work.

There is currently an enormous amount of work relat-
ed to MDA. In the particular field of MDA and compo-
nent-based software development, several profiles for dif-
ferent component models have been developed. A UML
profile for the Corba Component Model is described in
[5]. The research described in [2] describes PervML,
which is a language to model pervasive applications.
This work is closely related to the work presented in this
article as the authors define a UML profile for the OSGi
platform. Their profile, however, does not cover the
Declarative Services component model specification and
it does not detail the construction of tools based on the
profile.

There is a considerable amount of research work relat-
ed to the construction of MDA tools. The work described
in [9] presents the development of an MDA tool that fa-
cilitates the modeling of distributed real-time embedded
(DRE) systems, validating the PSM models and generat-
ing the code for them. However, this work focuses on a
specific domain and does not present the process for the
construction of the tool or how to create tools for others
domains.

There are many tools in the market that allow devel-
opers to visually model their component-based applica-
tions, although most of them are platform specific. Some
examples of these tools include JDeveloper from Oracle
(www.oracle.com), ComponentOne Studio from Compo-

Figure 8: An example where a constraint is violated to show
how the tool highlights the problem.

Figure 7: The resulting service-oriented component
development tool.

nentOne (www.componentone.com), Visual Cafe from
Symantec (www.symantec.com) and VisualAge from
IBM (www.ibm.com). In all of them an application can
be built following an MDA approach since the applica-
tion is modeled and the tools perform the PSM to code
transformation automatically. However, most of these
tools are expensive and are not easily extensible to other
domains or platforms. There are also open source tools
which implement some aspects of MDA. These tools in-
clude Kermeta (www.kermeta.org), which is an open
source project for Eclipse that is still under development
and AndroMDA (www.andromda.org).

In the particular case of the OSGi platform, at the mo-
ment of this writing, there are no similar tools available.
The project presented in this paper intends to fill this
gap, however, the tool that has been developed is still
limited with respect to the functionalities offered by the
aforementioned tools as these tools generally allow devel-
opers to model certain functional aspects of the applica-
tion.

6. Conclusions and future work

This paper has presented the development process of a
service-oriented component model development tool
based on the MDA approach. The resulting tool is of
great help to developers who can model the components
visually. The tool verifies that the models are semantical-
ly correct with respect to the restrictions imposed by the
component model's specification and it is also capable of
generating the component's skeleton which includes a
declarative descriptor and implementation code. At the
moment, the tool is limited to modeling component's
structure and non-functional characteristics relative to
supporting dynamism.

This work led us to conclude that MDA is a very use-
ful and complementary approach to the current trend of
extraction of non-functional logic and its expression in a
declarative way outside of the component's logic (as in
EJB -http://java.sun.com/products/ejb-, Spring -http
://www.springframework.org- or Declarative Services).
The declarative approach has been of great help to devel-
opers who can now focus on the development of function-
al aspects of their applications. However, this approach is
also error prone and it often becomes difficult to locate
and debug errors as they generally appear only at run-
time, when the descriptors are interpreted. Tools such as
the one presented in this paper prevent these errors from
occurring as they verify the semantic correctness at the
modeling level. Even though the declarative approach
has been of great help in the reduction of development
time, tools such as the one presented in this paper further

reduce development time as they allow developers to
work at a higher level of abstraction.

In addition, the lightweight process used for the devel-
opment of the tools can be used in the construction of
other tools for different domains. Experimentation has
shown that the process is easy to follow and can be im-
plemented quickly. The MDA tools in the market today
tend to be complex and expensive, hard to customize and
may lose their value very quickly as a consequence of the
constant evolution of technology. The approach presented
in this paper is useful to build a variety of MDA tools
suited to different needs, furthermore, if the market or
technology changes, the tool can be easily modified or
substituted by a new one.

Future work includes the creation of a complete MDA
tool by introducing the possibility of modeling indepen-
dently from a particular platform and also of introducing
business logic at the PIM level. Other tasks include the
creation of transformation rules for different platforms
and the extension of the development tool so that not
only components can be modeled, but also compositions.
Finally, it is planned that the tool presented in this article
will be released as open source.

7. References.

[1] H. Cervantes and R. S. Hall: "A Framework for Construct-
ing Adaptive Component-based Applications: Concepts and
Experiences," CBSE 7, Edinburgh, Scotland, May 2004.

[2] L. Fuentes and A. Vallecillo,“An introduction to UML Pro-
files,” European Journal for the Informatics Professional, Vol.
V, No. 2, pp. 6-13, April 2004

[3] A. Kleppe, J. Warmer and W. Bast. “MDA Explained: The
Model Driven Architecture: Practice and Promise”, Addison-
Wesley, 2003

[4] J. Muñoz, V. Pelechano and J. Fons, “Model Driven Devel-
opment of Pervasive Systems”, ERCIM News, July 2004, vol.
58, pp. 50-51, ISSN: 0926-4981

[5] OMG, “UML Profile for CCM, V1.0”. Online document
available at:
http://www.omg.org/technology/documents/formal/profile_ccm.
htm

[6] OSGi Alliance, “OSGi Service Platform, Core Specifica-
tion, Release 4”, August 2005, available online at:
http://www.osgi.org

[7] OSGi Alliance, “OSGi Service Platform, Service Com-
pendium, Release 4”, August 2005, available online at:
http://www.osgi.org

[8] UML 2.0 “OCL Specification”. OMG. 2003, available on-
line at: http://www.omg.org

[9] Douglas Schmidt, Jeff Gray, Nanbor Wang, Aniruddha
Gokhale, “CoSMIC: An MDA generative tool for distributed
real-time and embedded component middleware and applica-
tions”, OOPSLA 2003, Anaheim, California, United States of
America, October 2003.

