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Abstract

This paper describes a project, called Gravity, that
defines a component model, where components provide
and require services (i.e., functionality) and all compo-
nent interaction occurs via services. This approach intro-
duces service-oriented concepts into a component model
and execution environment. The goal is to support the
construction and execution of component-based applica-
tions that are capable of autonomously adapting at run
time due to the dynamic availability of the services pro-
vided by constituent components. In this component mod-
el the execution environment manages an application
that is described as an abstract composition that can
adapt and evolve at run time depending on available
Sfunctionality. The motivation of Gravity is to simplify the
construction of applications where dynamic availability
arises, ranging from modern extensible systems to novel
computing approaches, such as context-aware applica-
tions.

1. Introduction

This paper describes a project, called Gravity, that de-
fines a component model, where components provide and
require services (i.e., functionality) and all component inter-
action occurs via services. This approach introduces service-
oriented concepts into a component model and execution
environment. The goal is to support the construction and ex-
ecution of component-based applications that are capable of
autonomously adapting at run time due to the dynamic
availability of the services provided by constituent compo-
nents. Dynamic availability refers to a situation where ser-
vices may become available or unavailable at any time dur-
ing the execution of an application and this is outside of ap-
plication control. An application must adapt at run time to
these types of changes by looking for alternatives to depart-
ing services and integrating new services.

The Gravity project currently focuses on the construction
of applications that are non-distributed and user-oriented
(i.e., they support direct user interaction via a graphical user
interface). User-oriented applications are directly impacted
by dynamic availability. First, it is more and more common
for user-oriented applications to be highly extensible and to

act as a sort of tiber-client, which requires that the applica-
tion incorporate new services for accessing new types of
content and functionality. Applications, in this case, are in a
constant state of assembly, continuously integrating new
services as necessary. Second, a growing number of user-
oriented applications are created using technologies, such as
web services, where local components are stubs to remote
entities that are inherently unreliable and likewise push this
unreliability into applications in the form of dynamic avail-
ability. Examples of user-oriented applications that are im-
pacted by dynamic availability range from extensible sys-
tems, such as web browsers or integrated development envi-
ronments, to application managers, such as the ones found
in desktop environments or personal digital assistants
(PDAs).

The motivation for this research is to explicitly support
dynamic availability of services in a component model and
to simplify the creation of component-based applications
that are capable of autonomously reacting to changes in ser-
vice availability, such as a web browser that is capable of
automatically incorporating plug-ins to visualize particular
content. Another motivation is to propose mechanisms to
support novel computing approaches, such as context-aware
computing [14]. In context-aware computing, contextual in-
formation, such as the user's location, is used to direct the
functionality and/or behavior of an application. For exam-
ple, if a user enters an airport, an application inside his
PDA may automatically incorporate services obtained from
the airport's wireless network, such as one that provides
flight information. When the user leaves the airport, such
services are no longer available.

The Gravity project is founded on the concept of a ser-
vice-oriented component model, which adopts the service-
oriented approach of late, non-explicit bindings among
components via services. In this model, an application is de-
scribed as an abstract composition that adapts and evolves at
run time depending on service availability. A supporting ex-
ecution environment manages application compositions as
changes in service availability occur and provides continu-
ous deployment and integration support.

Component and service orientation, which are the foun-
dations for this work, are discussed and compared in the
next section. Section 3 presents the principles of a service-
oriented component model. Section 4 describes Gravity,



which is an execution environment that implements princi-
ples of a service-oriented component model. Section 5
presents an execution scenario, followed in section 6 by re-
lated work. Section 7 presents future work, followed by the
conclusion.

2. Component and service orientation

This section describes the fundamental characteristics of
both component and service orientation. A description of
each approach is given followed by a comparison of the two
approaches.

2.1. Component orientation

Component orientation promotes the construction of ap-
plications as compositions of reusable building blocks
called components. Although there is no universal agree-
ment on the definition for the term component, the defini-
tion formulated by Szyperski [26] is widely referenced in
literature:

“A software component is a binary unit of compo-
sition with contractually specified interfaces and
explicit context dependencies only. A software
component can be deployed independently and is
subject to composition by third parties.”

The component approach makes a distinction between
component developers and assemblers, which are the third
parties referenced in the definition above. Since component
developers and assemblers may reside in different compa-
nies, it is necessary to deliver components as binary units to
avoid source code release. A fundamental assumption of
this approach is that the construction of an application is
based on components that are physically available to the as-
semblers when composing (i.e., assembling) the applica-
tion.

In the majority of industrial component models, such as
EJB [28], CCM [22], and COM [4], components are similar
to object-oriented classes in the sense that they can be in-
stantiated and that their instances can be stateful; in this pa-
per, the term “component” is used to indicate this meaning,.
A composition is created by an actor that instantiates some
component instances, usually from a component factory,
and then customizes and connects these instances to each
other in some appropriate fashion.

To support composition, a component must provide in-
formation that describes the external structure of its in-
stances, such as provided and required functional inter-
faces, and modifiable properties. The description of the ex-
ternal structure or external view is used by the application
assembler to connect and customize the various component
instances into a structural composition, similar to the ap-
proach of architecture definition languages (ADLs). Com-
position is performed using either a standard programming
language or a specialized one. Hierarchical composition is
achieved when the external view of a component is itself

implemented by a composition.

Components are delivered and deployed independently
as binary code along with their required resources, such as
images and libraries. When installed, a component may re-
quire deployment dependencies be fulfilled before it can be
instantiated. Finally, component instances require an execu-
tion environment that provides run-time support, normally
through what is known as a container [10]. Run-time sup-
port includes life-cycle management and handling of non-
functional characteristics such as remote communication,
security, persistence, and transactions.

2.2. Service orientation

Service orientation shares the component-oriented idea
that applications are assembled from reusable building
blocks, but in this case the building blocks are services. A
service is functionality that is contractually defined in a ser-
vice description, which contains some combination of syn-
tactic, semantic, and behavioral information. In service ori-
entation, application assembly is based only on service de-
scriptions; the actual service providers are located and inte-
grated into the application later, usually prior to or during
execution. As a result, service orientation focuses on “how
services are described and organized in a way that supports
the dynamic discovery of appropriate services at run
time.” [5]
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Figure 1. Service-oriented interaction pattern

To support dynamic discovery, service orientation is
based on an interaction pattern involving three different ac-
tors; these actors are service providers, service requesters,
and one or more service registries (see figure 1). Service
providers publish their service descriptions into a service
registry so that clients can locate them. Service requesters
interrogate the service registry to find service providers for a
particular service description. If suitable service providers
are present in the service registry at the moment the request
is made, the registry returns a reference to one or more ser-
vice providers so that the service requester can select and
bind to any of them. When the service requester binds to the
service provider, the provider returns a reference to a ser-
vice object that implements the service functionality.

Service orientation promotes the idea that a service re-
quester is not tied to a particular provider; instead, service
providers are substitutable as long as they comply with the
contract imposed by the service description. Another funda-



mental characteristic of service orientation is that services
exhibit dynamic availability, since they can be added or re-
moved from the service registry at any time. Consequently,
running applications must be capable of releasing departing
services or of incorporating newly arriving services.

Since a service-oriented application is built by compos-
ing service descriptions, it is an abstract composition that
only becomes concrete at run time. Service composition can
be realized through standard programming languages, al-
though a flow-based approach (e.g., processes) is favored in
the domain of web services [11]. Hierarchical service com-
position is achieved when a service composition itself im-
plements a service description.

Finally, a service-oriented platform provides infrastruc-
ture to support building applications according to service-
orientation principles. In addition to a service registry, some
service platforms provide notification mechanisms used to
inform service requesters of the arrival or departure of ser-
vices, others use the concept of a service lease, which
means that service availability is guaranteed only for a de-
termined time period after which the lease must be re-
newed.

2.3. Approach comparison

The two previous subsections present two different ap-
proaches for constructing applications from reusable build-
ing blocks. These two approaches promote reuse by creating
a separation between building block development and ap-
plication assembly.

There are, however, differences between these two ap-
proaches. One difference concerns the fact that in compo-
nent orientation, applications are assembled from building
blocks that are integrated at the moment of assembly, while
in service orientation integration occurs prior to or during
execution, since only service descriptions are available dur-
ing assembly. As a consequence of this, service orientation
places a stronger emphasis on service description and the
separation between description and implementation,; this en-
ables better support for run-time discovery and substitution.
Run-time component discovery and substitution are not pri-
mary concerns in component orientation, so a separation
between the component's external view and its implementa-
tion is less strictly enforced.

A second difference is that building blocks exhibit dy-
namic availability in service orientation, since services can
be registered or unregistered from the service registry at any
time. This is not the case for component orientation, where
the hypothesis that components may arrive or depart during
execution is typically not supported. As a result, service
compositions are more dynamic in nature than component
compositions. Dynamism in service composition includes
explicit support for incorporating new services that become
available during execution or releasing departing services.
Of course, a certain degree of dynamism is possible in com-
ponent orientation, but in general this is not explicitly sup-
ported and must be done programmatically. Further, com-

position in component orientation is structural in nature,
while service-oriented composition tends to focus on flow-
based approaches, such as process-oriented composition.

A third difference is that the separation between compo-
nent and instance is explicit in component orientation. This
separation mandates that component instances be explicitly
created. In service orientation, service object creation is im-
plicit and not even considered by service requesters.

Finally, packaging is an important activity in component
orientation, since a component is defined as an indepen-
dently deliverable and deployable entity. Service orientation
does not consider delivery and deployment; it is supposed
that these activities occur prior to service registration and
lookup.

3. Combining services and components

A service-oriented component model introduces con-
cepts from service orientation into a component model. The
motivation for such a combination emerges from the need
to introduce explicit support for dynamic availability into a
component model. This section first describes the principles
of a service-oriented component model and then discusses
the challenges of implementing one.

3.1. Principles

A service-oriented component model is based on the fol-

lowing principles:

* A service is provided functionality. A service is a
reusable operation or set of operations.

* A service is characterized by a contract. A contract
defines a service's characteristics for composition, in-
teraction, and discovery. This is achieved by describ-
ing some combination of the service's syntax, behav-
ior, and semantics. An important syntactical aspect of
a contract is that it explicitly declares a service's de-
pendencies on other services to enable structural com-
position.

» Components implement a contract. By implementing
a contract, the component provides the described ser-
vice and obeys its constraints. In addition to the service
dependencies specified in the contract, a component
may also declare additional implementation-specific
service dependencies. Services are the sole means of
interaction among component instances.

» The service-oriented interaction pattern is used to
resolve service dependencies. Services provided by
component instances are published into a service reg-
istry. The service registry is used to dynamically dis-
cover services at run time for resolving service depen-
dencies.

» Compositions are described in terms of contracts. A
composition is a set of contracts that are used to select
concrete component to instantiate. Explicit bindings
are not necessary, since they are inferred at run time
from the service dependencies declared in the con-



stituent contracts. Compositions become concrete at
run time as components that provide the constituent
contracts are discovered and instantiated into the com-
position. Composition is a continuous run-time activity
that responds to the availability of services.

Contracts are the basis for substitutability. In a
composition, any component that implements a given
contract can be substituted with any alternative com-
ponent that implements the same contract.

These principles enable explicit support for dynamic
availability of services for a variety of reasons. First, it is not
necessary to select particular components for a composition,
since compositions are defined in terms of contracts, which
are a basis for substitutability. Further, substitutability is
strengthened by recognizing two levels of dependencies,
both contractual and implementation specific; this is differ-
ent from both traditional component and service orienta-
tions. In component orientation, only implementation de-
pendencies exist, which hinders substitutability. In service
orientation, service dependencies are not declared as part of
the contract, which eliminates the possibility of structural
composition. Dynamic availability is also enabled because
explicit bindings are not necessary in a composition, since
they are inferred from the contracts. Finally, all service de-
pendencies are resolved at run time using the service-orient-
ed interaction pattern and this interaction pattern forms the
basis of a continual composition life cycle.

3.2. Challenges

There are two main challenges in creating a service-ori-
ented component model; these are dealing with ambiguity
and dynamic availability.

Ambiguity is inherent to service orientation and arises
when multiple candidate services are available that can re-
solve a given service dependency. In such a situation, it is
difficult to know which of the candidate services is the best
one to choose. Ambiguity is related to other research ques-
tions, such as locality, that involve choosing the best option
among many valid choices. In a given situation, the best
choice may be one that is physically near, inexpensive, se-
cure, or any other metric that is important to the application.
There is no single or complete way to deal with such ambi-
guities and only partial solutions are possible. One approach
for limiting ambiguity is through rich discovery mecha-
nisms that use semantics and behavior, in addition to syntax,
to reduce the number of candidate services for resolving a
given service dependency.

Dynamic availability of services results for any number
of reasons, including sophisticated concepts such as context
awareness or fundamental concepts related to continuous
deployment activities. Since these changes occur at run
time, they have repercussions on existing component in-
stances and the compositions in which they reside. Address-
ing dynamic availability is a complex task that requires
component instances to listen for service departure or ar-
rival and applications to listen for component departure or

arrival. In response to changes in service availability, com-
ponent instances must adapt by searching for alternative
services, for example. Applications must adapt by finding
replacements for departing components or by incorporating
instances of newly arriving components.

Gravity, which is discussed in the next section, focuses
on supporting dynamic availability, although it currently
provides only simple mechanisms to deal with ambiguity.

4. Gravity

Gravity implements principles of a service-oriented
component model and also provides a Java-based execution
environment that manages run-time changes that result
from dynamic availability. The benefit of this approach is
that dynamic availability is supported explicitly and that
adaptation logic is handled by the execution environment,
which simplifies application development. To achieve this,
Gravity adopts a two-level management approach, where
“local” constraints are managed at the component instance
level and “global” constraints are managed at the composi-
tion level. These topics are presented in the following sub-
sections; they are illustrated with a simple example that de-
picts the construction of a graphical web browser that is ex-
tendable using plug-ins.

4.1. Support for Dynamic Availability

The Gravity execution environment explicitly manages
dynamic availability of services for applications. The fol-
lowing scenarios are supported by Gravity:

* Arrival of a new component. An existing composition
may wish to integrate or substitute an existing compo-
nent instance with one created from the newly arriving
component; this situation can occur for different rea-
sons. For example, a composition may be able to ac-
commodate an indefinite number of instances that
provide a particular service, such as an application that
can be extended by plug-ins, or a composition may
wish to substitute an existing instance by one created
from the new component because its service offers
some better characteristic.

* Departure of an existing component. All of the in-
stances created from the departing component also
need to be removed from compositions in which they
reside. This is necessary since the instances are likely
to be in an unusable state. For example, a component
may provide a Bluetooth print service, which has a de-
pendency on a physical printer; when the printer is no
longer in range, all of its instances cease functioning.

* Arrival of a new component instance. A newly intro-
duced instance's provided services, if any, are pub-
lished into the service registry.

» Departure of an existing component instance. A re-
moved instance has its provided services, if any, re-
moved from the service registry.



» Arrival of a new service. Existing component in-
stances may use the new services to fulfill existing ser-
vice requirements. As a consequence, previously un-
available services provided by these newly fulfilled in-
stances become available.
Departure of an existing service. Existing compo-
nent instances that depend on the departing service
may be affected by its removal from the service reg-
istry depending on the characteristics of their depen-
dencies. As a consequence, their services may also be
unregistered.

To manage dynamic availability, Gravity follows a two-
level approach that manages instances at a local level and
compositions at a global level.

4.2. Instance-level management

Instance-level management is “local,” since it only con-
cerns service dependency management for a particular
component instance independent of the application in
which it resides. In Gravity, component instances can have
one of two states: invalid or valid. An invalid instance's ser-
vice dependencies are not satisfied and it is unable to exe-
cute and to provide its services, while a valid instance's ser-
vice dependencies are satisfied and it is able to execute and
provide its services. Component instances in Gravity are
“intentional,” since a request to create an instance initially
starts out invalid and then may alternate between valid and
invalid states as its service dependencies are dynamically
satisfied and unsatisfied, respectively. This occurs until the
instance is explicitly destroyed. A component description
provides Gravity with the necessary information to manage
service dependencies for component instances.

4.2.1. Component description. In the Gravity implemen-
tation, a component description represents a contract, simi-
lar to the contract concept defined in section 3.1, although it
does not currently separate the service contract from the
component implementation details; this is the subject of fu-
ture work. The component description contains a list of pro-
vided services, a set of service properties (Whose purpose is
to identify the component instance from other providers of
the same services), and a set of service dependencies that
need to be fulfilled for a component instance to become
valid. Additionally, the component description includes the
name of a class that implements the component. A compo-
nent description may describe a singleton instance or a fac-
tory of instances. In the case of a singleton instance, the
component instance is automatically created when the com-
ponent is deployed. In the case of a factory, component de-
ployment results in the automatic registration of a special
factory service, which is used to create and destroy instances
of the component.

Service dependencies have properties that determine
how bindings between an instance and the services it re-
quires are created and managed at run time. Service depen-
dencies are characterized by a fully qualified service name

<component class="org.gravity.webbrowser.BrowserImpl"
factory="yes">
<provides
service="org.gravity.services.Application"/>
<provides service="org.gravity.services.WebBrowser"/>
<property name="version" value="1.0" type="string"/>
<requires
service="org.gravity.services.BrowserPlugin"
filter=""
cardinality="0..n"
policy="dynamic"
bind-method="addPlugin"
unbind-method="removePlugin"
/>
<requires
service="org.gravity.services.WindowManager"
filter=""
cardinality="1..1"
policy="dynamic"
bind-method="setWindowManager"
unbind-method="unsetWindowManager"
/>
</component>

Figure 2. A component descriptor

and three properties: cardinality, binding policy, and an
optional filter.

Cardinality is used for expressing both optionality and
aggregation. Optionality refers to whether the service de-
pendency represents a mandatory or non-mandatory bind-
ing, while aggregation refers to whether the service depen-
dency represents single or multiple bindings. In a compo-
nent descriptor, the lower end of the cardinality value repre-
sents optionality, where a '0' means that dependency is op-
tional and '1' means that it is mandatory. The upper end of
the cardinality value represents aggregation, where a '1'
means the dependency is singular and 'n' means that it is ag-
gregate.

Binding policy determines how dynamic service changes
are handled: a static binding policy indicates that bindings
cannot change at run time without causing the instance to
become invalid (at which point its services are
unregistered), whereas a dynamic binding policy indicates
that bindings can change at run time as long as bindings for
mandatory dependencies are satisfied.

Service dependencies may also include a filter (in LDAP
query syntax) that evaluates over the service properties at-
tached to service providers when their services are regis-
tered. This filter is used to limit ambiguity by reducing the
number of potential service providers that can be used to
satisfy the associated service dependency.

Figure 2 shows an example of a component descriptor.
In this example, the component provides both a Web-
Browser service and an Application service. The
component has a service dependency on a BrowserPlu-
gin service. This dependency is characterized as dynamic
and has a cardinality of 0. .n. In this case, the cardinality
means that multiple BrowserPlugin services can be
connected to an instance of the component and that plug-in
services are optional. The component also has a service de-
pendency on a single WindowManager service that is re-
quired to create windows.



4.2.2. Run-time management. In Gravity, instances are
managed by the execution environment using a mechanism
named the Service Binder [7]. During execution, each com-
ponent instance is managed by an instance manager that is
responsible for creating bindings between the instance it
manages and other instances that provide required services.
The instance manager also controls the instance's life cycle,
manages service registrations, and maintains the instance's
validity. Bindings between component instances are created
following the service-orientation interaction pattern, where
the instance manager queries the service registry to find ser-
vices provided by other instances. Binding management,
which includes creation or destruction of bindings, occurs
when the instance manager receives notifications announc-
ing changes in the service registry. The instance manager is
similar to a container that extracts adaptation logic from the
components and that implements the inversion of control
pattern [15]. The component class implements service bind-
ing and unbinding methods that the instance manager uses
to set service references. Additionally, the component class
may implement control interfaces that are discovered dy-
namically and allow component instances to participate in
dynamic reconfiguration activities.

This approach for instance-level management allows an
application to be constructed as a set of interconnected com-
ponent instances that self-assemble and self-adapt with re-
spect to dynamic availability. More precisely, an applica-
tion built from these mechanism can adapt with respect to
the addition, removal, and substitution of a component in-
stance [8]. However, instance-level management does not
have a global view of an application, which must be ad-
dressed by composition-level management.

4.3. Composition-level management

Instance-level management is only concerned with
composition at a “local” level, since an instance manager is
only responsible for managing a single instance. An in-
stance manager does not possess a global view of the appli-
cation. While this is sufficient for a certain class of applica-
tions (see section 7), constructing applications often re-
quires a global view. This global view, which is described at
the composition level, contains information about the ser-
vices that are necessary to build a particular application.
Composition-level management guides instance creation
and also manages changes resulting from dynamic avail-
ability of services. Composition-level management must
also address issue of unpredictability.

4.3.1. Unpredictability and composition scopes. In-
stance-level management faces the problem of unpre-
dictability due to ambiguity. If an instance has a singular
dependency on a particular service and two providers of the
service are present at a given moment, the choice of the
provider that is used cannot be predicted. Unpredictability
can be reduced by using filters in required service inter-
faces, but filters have two downsides. The first is that a filter

<composition factory="yes">

<exports from="core"
service="org.gravity.services.Application"
type="provided" />

<exports from="core"
service="org.gravity.services.WindowManager"
type="required" />

<property name="appName" value="WebBrowser"
type="string"/>

<placeholder id="core" filter="" cardinality="1..1">

<provides
service="org.gravity.services.Application"/>

<provides
service="org.gravity.services.WebBrowser"/>

<requires
service="org.gravity.services.WindowManager"
filter=""

cardinality="1..1"
policy="dynamic"/>
<requires
service="org.gravity.services.BrowserPlugin"
filter=""
cardinality="0..n"
policy="dynamic"/>
</placeholder>
<placeholder id="plug" filter="" cardinality="0..n">
<provides
service="org.gravity.services.BrowserPlugin"/>
</placeholder>
</composition>

Figure 3. A composition description

that is too strict excessively reduces the possibility of service
provider substitution. The second is that filters are not suffi-
cient to avoid ambiguity when multiple instances of the
same component exist, since provided services from these
instances look identical to each other in the service registry.
Composition scopes are introduced to reduce these issues.

Scopes constrain dependency management inside a well
defined boundary. Upon creation, component instances are
placed inside a particular scope. Each scope contains an in-
dependent service registry that is used by instance managers
inside the scope to manage dependencies; this means that
services in one scope are not visible to an instance manager
in another scope. Scopes are hierarchical, where the root of
the hierarchy is called the global scope; this scope hosts sin-
gleton instances.

Services that are provided or required by an instance in-
side a scope may be exported to the parent scope. Since ev-
ery scope corresponds to a particular composition, and
scopes can be nested, this enables hierarchical composi-
tions. Scopes can be created or destroyed dynamically. The
destruction of a scope results in the destruction of the in-
stances and child scopes that it contains.

4.3.2. Composition description. A composition descrip-
tion defines sets of provided and required services, called
placeholders. Each placeholder represents a contract, simi-
lar to the contract concept defined in section 3.1, that guides
component selection and the creation of one or more com-
ponent instances into the composition scope. The place-
holder is characterized by a unique identifier, a filter, and a
cardinality. The filter is used to select among multiple com-
ponents and the cardinality defines whether a placeholder
represents an optional or mandatory instance and if it repre-



sents a single or aggregate instances.

Gravity's service-oriented component model supports the
concept of hierarchical composition by allowing a composi-
tion description to be used as a component. Hierarchical
composition is achieved by allowing compositions to export
provided and required services. Such compositions can be
created using a factory and integrated into other composi-
tions. To create a factory for a composition, the composition
description must include the factory attribute in the
composition tag. To export provided or required services
from a placeholder, the exports tag is used, which refer-
ences placeholders inside the composition. To avoid
changes in the external view of the component at run time,
exports can only reference placeholders that are mandatory
single instances (that is with a cardinality of 1. . 1); lifting
this restriction is the subject of future work. Additionally,
service properties can be attached to the composition.

Figure 3 shows a simple composition based on two
placeholders, one that represents a component that provides
the WebBrowser and Application services and one
that provides a BrowserPlugin service. This composi-
tion represents a web browser that can incorporate multiple
plug-ins at run time; plug-ins in this case are optional. Since
this composition is a factory, multiple instances of it can be
created. Each composition instance is created in a different
scope, which means that plugin instances are not shared
among browsers.

4.3.3. Run-time management. As with instance-level
management, compositions are also valid or invalid. When
a composition is valid, its associated scope is created and
services from its instances are exported. When a composi-
tion is invalid, the scope associated with the composition is
destroyed.

Composition creation. Every composition is managed
by a composition manager that first locates appropriate
components for each placeholder declared in the composi-
tion description. Components are located through Facto-
ry services and selected according to the external view and
a filter that references the properties associated with a com-
ponent. The criteria used to select a component for use in a
composition is that it must, at minimum, match the external
view defined in the placeholder description. The component
may provide additional services and require additional ser-
vices, but the latter must be optional. The fact that addition-
al required services need to be optional is to guarantee that
the instance can eventually become valid inside the compo-
sition. When factories for every mandatory instance are lo-
cated, the scope associated with the composition is created
and instances are created and introduced inside the scope.
From that moment instance-level management automatical-
ly composes the constituent components.

Composition management. As changes in the services
occur due to dynamic availability, some instances may need
to be removed or added to a composition. The consequences
that these changes have on a valid composition depend on
the cardinalities associated with placeholders. The departure

of an instance from an optional placeholder does not invali-
date the composition. The departure of an instance from a
mandatory placeholder invalidates the composition if the
composition manager is not capable of locating a compo-
nent that can provide a replacing instance. New instances
may be incorporated at any time through placeholders that
represent aggregate instances. The composition manager
from the execution environment constantly strives to main-
tain the validity of a composition.

4.4. Other run-time support

The Gravity execution environment provides support for
continuous component deployment; this includes install, ac-
tivation, update, and removal of components and composi-
tions. Components and compositions are packaged as JAR
files and installed from URLs. When the execution environ-
ment activates a component, it triggers factory registration
or singleton instance creation; however, this is only possible
after component deployment dependencies are fulfilled.
Deployment dependencies relate to required or provided
Java packages and are declared inside a manifest in the
component JAR file. Deployment dependencies are man-
aged automatically by the execution environment.

Gravity also provides a design environment [17], where
component compositions are created visually using drag-
and-drop gestures from a list of factories onto a design can-
vas. Once created, instances can be visually customized.
The design environment allows the end user to switch from
design mode to run-time mode and additionally provides
simple mechanisms to support changes in the user interface
due to changes in component availability during execution.

5. Execution scenario

This execution scenario describes an application launch-
er that allows the end user to create instances of components
that provide an Application service. The application
launcher component provides a WindowManager service
and has an aggregate service dependency on Factory ser-
vices for components that provide an Application ser-
vice. Since the application launcher's dependency on facto-
ries is an aggregation, the application launcher is automati-
cally bound to Application factories as they appear in
the execution environment. For this scenario, the web
browser component depicted in figure 2 and the web brows-
er composition depicted in figure 3 have been deployed into
the execution environment. The application launcher pro-
vides a menu of Application factories, which allows
the end user to create application instances.

When the end user selects an entry from the factory
menu, the corresponding component factory is used to cre-
ate a component instance that provides an Applica-
tion. In this scenario, the only available application is a
simple web browser, defined by the aforementioned compo-
sition, which is created inside the application launcher's
window when launched; figure 4a shows two instances of
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Figure 4. Application Launcher and Web
Browser
the web browser composition. Initially, no components that
offer BrowserPlugin services are available in the exe-
cution environment, so when the end user selects a link
leading to content requiring the use of a plugin (in this case
a PDF file), an error is displayed and is depicted in figure
4b. If a component providing a BrowserPlugin service
to display PDF content is installed in the execution environ-
ment, then instances of this plug-in component are automat-
ically created and integrated into each web browser compo-
sition scope. Now if the end user selects a link pointing to a
PDF file, the contents are correctly displayed, as depicted in
figure 4c. If the plug-in component is removed, browsers

that are displaying a PDF file at that moment will modify
their display to reflect the change.

Although this execution scenario may appear simple, the
main purpose is to demonstrate how Gravity simplifies the
construction of an application that supports dynamic avail-
ability of its constituent services. With these mechanisms it
is possible to create applications that exhibit sophisticated
auto-adaptive behavior.

6. Related work

Component models including COM [4], Java-
Beans [27], EJB [28] and CCM [22] are based on the con-
cepts described in section 2.1, which are also shared by
Gravity's service-oriented component model. These compo-
nent models target various application domains, but none
explicitly supports dynamic availability other than via pro-
grammatic methods. These models also follow a program-
matic approach toward component composition (except
CCM) and do not explicitly support hierarchical composi-
tion. EJB and CCM support non-functional aspects such as
persistence, transactions, and distribution, which are not
currently supported in Gravity. Gravity's support for dy-
namic discovery of control interfaces (see section 4.2.2)
could be used as a starting point to implement some of these
features.

Service-oriented platforms include OSGi [23], Jini [2],
web services [11] and Avalon [1]. OSGi defines a frame-
work to deploy services in a centralized environment, but
leaves service dependency management to programmers.
OSGi is used as a substrate on top of which the Gravity exe-
cution environment is built. Jini is a Java-based distributed
architecture that supports the existence of multiple service
registries. Jini introduces the concept of service leasing as a
mechanism that limits the time a client can access a service.
Web services target business application interoperability
and are built upon XML-based protocols for service de-
scription (WSDL) and communication (SOAP). Web ser-
vices are registered in a service registry called UDDI. Com-
position in web services is achieved mostly by use of flow-
based models, as in BPEL4WS [12]. Web services relation-
ship to Gravity is mostly conceptual, although Gravity com-
ponents may act as stubs to web services. Avalon has con-
cepts similar to a service-oriented component model, since
Avalon components are connected following a service-ori-
entation interaction pattern; dynamic availability is not sup-
ported by this platform. All these service platforms do not
support automated service dependency management.

Composition languages [21] leverage ADL concepts (ar-
chitectural description targeted towards documentation and
analysis) to define component compositions that include
scripts, coordination primitives, and adaptation mecha-
nisms. Script execution performs tasks such as component
creation and wiring, but is not oriented toward supporting
run-time dynamic changes. The CoML composition lan-
guage [3] is related to Gravity since it defines abstract com-
positions, in this language, however, compositions become
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concrete at design time and not at run time.

Dynamically reconfigurable systems focus on changing
the architecture of a system during execution [18]. These
systems use explicit architecture models and map changes
in these models to the application implementation [24].
Self-adaptation through dynamic reconfiguration in compo-
nent-based systems is studied in [19] and [16], among oth-
ers. This last work explores the possibility of constructing
self-assembling and self-adaptive applications based on ar-
chitectural constraints, however, their approach requires
that adaptation logic is written programmatically.

Component-based development environments, such as
IBM's Eclipse [25] and WREN [20], are related to the de-
sign environment provided by Gravity, but these environ-
ments assume that composition cannot occur during appli-
cation execution. Sun's Bean Builder [13] supports switch-
ing between design and run-time modes, but is not built
upon a component model where dynamic availability is
present.

Semantics-to-
context matching
filter

7. Validations and project status

A Gravity prototype and demonstration is available, as
well as an open source implementation of the Service
Binder technology mentioned in this paper.! The Service
Binder technology has been used in at least two external
projects [8]. One project is an industrial research prototype
that deals with the management of electric devices connect-
ed through a bus to an OSGi framework. Devices can be
added or removed at any moment and this requires that
components be added or removed dynamically from the ex-
ecution environment. The second project is a commercial
application that is an extensible client for monitoring an on-
line transaction processing system. The client can be ex-
tended through various tools that provide different views of
the system that is being monitored. In this project, the auto-
matic dependency binding is used to dynamically assemble
the application out of arbitrary configurations of deployed
components. These projects are based on systems construct-
ed exclusively from singleton instances. Support for com-
position management has only recently been included in the

1 available at http://gravity.sf.net/

Service Binder and external evaluations for it are expected
to occur in the near future.

8. Future work

Gravity currently solves many pragmatic issues with re-
spect to supporting dynamic service availability and it pro-
vides an effective platform for further experimentation.
This section discusses important open research questions in
no particular order.

Service description. The current Gravity implementa-
tion does not separate service description from component
description; this issue must be addressed in a next version.
Additionally, service semantics and behavior are currently
determined through fully qualified service interface names.
One approach is to annotate services with semantic descrip-
tion, as in [9]. Better service description is needed to im-
prove service discovery and selection, which further ad-
dresses issues related to ambiguity.

Supporting context awareness. One of the motivations
behind Gravity is to create an infrastructure to support novel
computing approaches such as context awareness. In this
approach, contextual information, such as the user location,
instigates changes in the behavior and functionalities pro-
vided by an application.

The vision of how Gravity could be used in supporting
context awareness is depicted in figure 5. In this figure, a
filter guides composition creation and component deploy-
ment in an execution environment based on contextual in-
formation coming from different sources. Depending on the
information, the filter decides which components are in-
stalled or removed from the execution environment during
application execution. Contextual changes become the
source of dynamic availability of services. Applications that
are executing inside the platform adjust autonomously to
the changes in services using the mechanisms described in
this paper. A benefit of this approach is that it promotes a
separation between contextual information processing and
the infrastructure that manages the changes in an applica-
tion resulting from this information.

Flexible user interfaces. Since user-oriented applica-
tions support interaction via user interfaces, the conse-
quences of dynamic availability at the user interface level
must be studied. Research in plastic [6] user interfaces is
necessary to make dynamic changes to the user interface
smooth and unobtrusive.

State transfer. If an instance must be replaced inside of a
composition due to dynamic availability issues, its state
could be transferred to the incoming instance to lessen the
impact of service loss. While this is not currently imple-
mented in Gravity, the control interfaces mechanism dis-
cussed in section 4.2.2 could be used as a way to implement
this functionality.

Distributed architecture. Gravity currently studies the
mix between component and service orientation in a cen-
tralized environment; this approach could, however, be ap-
plied to distributed environments too.



9. Conclusions

This paper describes a project, called Gravity, with the
goal to support the construction and execution of compo-
nent-based applications that are capable of autonomously
adapting at run time to the dynamic availability of the ser-
vices provided by constituent components.

Gravity's approach introduces support for dynamic avail-
ability into its component model by adopting concepts from
service orientation. To this end, Gravity defines the concept
of a service-oriented component model and provides an ex-
ecution environment to support applications built with it.
The service-oriented component model is based on the idea
that component instances are service providers that may
register and/or unregister their services at any time. Services
provided by component instances are discovered at run time
using the service-oriented interaction pattern as components
and their instances are introduced into the execution envi-
ronment. Dynamic availability is managed by an execution
environment, built on top of the OSGi service platform, that
extracts adaptation logic from components and applications.

While Gravity simplifies the construction of modern ap-
plications where dynamic availability occurs, such as exten-
sible systems, it was conceived as a way to support novel
computing approaches, such as context awareness. An es-
sential element of Gravity's execution environment, the Ser-
vice Binder, has been used and evaluated in an industrial re-
search prototype and a commercial application. Feedback
from these projects has been very encouraging.
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