
FROGi: Fractal Components Deployment
over OSGi

Mikael Desertot1,3, Humberto Cervantes2, and Didier Donsez1

1 Laboratoire LSR-IMAG, 220 rue de la Chimie,
Domaine Universitaire, BP 53, 38041, Grenoble, Cedex 9, France

{mikael.desertot, didier.donsez}@imag.fr
2 Universidad Autonoma Metropolitana-Iztapalapa (UAM-I),

San Rafael Atlixco N 186, Col. Vicentina, C.P. 09340, Iztapalapa. D.F., Mexico
hcm@xanum.uam.mx

3 Bull SAS,
1 Rue de Provence, 38130, Echirolles, France

Abstract. This paper presents FROGi, a proposal to support continu-
ous deployment activities inside Fractal, a hierarchical component model.
FROGi is implemented on top of the OSGi platform. Motivation for this
work is twofold. On one hand FROGi provides an extensible component
model to OSGi developers and eases bundle providing. FROGi-based
bundles are still compatible with legacy OSGi bundles that offer third
party services. On the other hand, FROGi benefits from the deployment
infrastructure provided by OSGi which simplifies conditioning and pack-
aging of Fractal components. With FROGi, it is possible to automate the
assembly of a Fractal component application. Partial or complete deploy-
ment is also supported as well as performing continuous deployment and
update activities.

1 Introduction

Component-based software engineering (CBSE) is a development methodology
that promotes the idea that software can be built through the assembly of
reusable software units called components [14]. Components are characterized
by the fact that they explicitly define a set of provided functionalities along with
dependencies that allow the components to be assembled (i.e. composed). CBSE
assumes that component development and component assembly are clearly dif-
ferentiated activities. Moreover these activities can be performed by different
actors. This differentiation implies that delivery and deployment aspects must
be taken into account early in the development life-cycle. To support these
activities, components are typically packaged in a unit which includes every-
thing that is needed by the component to function, except whatever the com-
ponent declares as an explicit dependency. Dependencies can be fulfilled either
through composition or at deployment time. A component model is also associ-
ated to an execution environment which is responsible for controlling several as-
pects associated to the components at run-time. These aspects include life-cycle

W. Löwe and M. Südholt (Eds.): SC 2006, LNCS 4089, pp. 275–290, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

276 M. Desertot, H. Cervantes, and D. Donsez

management and the support of non-functional requirements such as persistence
or security.

Currently, many component models exist; the majority of them are targeted
toward specific application domains such as the construction of user interfaces
or the construction of server-side applications (for example, the Corba Com-
ponent Model (CCM) and Enterprise Java Beans (EJB)). The Fractal com-
ponent model, however, aims to be a general-purpose model and to address
a wide spectrum of domains [3]. The Fractal specification defines the compo-
nent model characteristics, and different implementations for this specification
exist. One of them is Julia, which is the reference Java-based implementation
(http://fractal.objectweb.org). An important particularity of the Fractal
component model is that it supports hierarchical composition, where a composi-
tion itself can be seen as a component that can be used in other compositions. An-
other particularity of this model is that it is extensible; this characteristic allows
this model to be independent from a particular application domain. Although
the Fractal specification defines clearly the characteristics of Fractal components,
it does not cover deployment aspects which, as previously mentioned, need to be
taken into account early in the development lifecycle. This paper presents FROGi
[6] which is an extension of the Fractal component model that supports deploy-
ment features and dynamic service-orientation. FROGi introduces the concept
of a deployment unit which is not covered in the original Fractal specification.
Furthermore, FROGi deployment units address the problem of deployment at
both the component and the composition level, necessary to support Fractal’s
hierarchical model. FROGi also addresses the issue of supporting continuous de-
ployment activities, which represent the fact that deployment activities, which
include installation, activation, update and un-installation of components oc-
cur continually. Supporting continuous deployment is facilitated by introducing
concepts from Service Orientation [2,7] into the component model.

FROGi implements these concepts by combining the Julia reference imple-
mentation of the Fractal component Model and the OSGi services platform
(http://www.osgi.org). FROGi simplifies Fractal-based application deploy-
ment and also allows these applications to support continuous deployment activ-
ities. This paper describes the concepts and the implementation of FROGi and
discusses some issues related to its realization. It is structured in the following
way. Section 2 presents the Fractal component model and its reference imple-
mentation Julia. Section 3 presents FROGi concepts. It describes how a Fractal
application is delivered as a set of deployment units. Section 4 discusses imple-
mentation details, including OSGi. Section 5 presents related work and finally
section 6 provides a conclusion and gives some perspectives to this work.

2 The Fractal Component Model

This section discusses the principles behind the Fractal component model and
its reference implementation Julia.

http://fractal.objectweb.org
http://www.osgi.org

FROGi: Fractal Components Deployment over OSGi 277

2.1 Fractal

The Fractal component model is intended as a general-purpose component
model. Fractal components are defined as entities that provide and require func-
tional interfaces and that can be composed hierarchically. Fractal components
can also provide or require various named instances of an interface of a same
type (similar to CCM’s facets). To support multiple application domains, Fractal
components allow an undefined number of control interfaces to be implemented
by the components. Control interfaces are used at run-time for various purposes.
The Fractal specification defines several control interfaces which cover aspects
such as life-cycle control (LifeCycleController LC), the management of con-
nections between components (BindingController BC), the configuration of the
component attributes (AttributeController AC) and the management of com-
posite contents (ContentController CC). Furthermore, different instances of a
Fractal component can be created from a factory associated with a particular
component type. Figure 1 illustrates an example of a composite component con-
taining two component instances. These instances, which represent a client and
a server, are bound together and an interface provided by the client instance
is exported outside the composition. Additionally, the two instances and the
composite provide several control interfaces.

The Fractal specification defines a standard API that allows component types
to be defined programmatically. The API also allows component instances to be
created, configured and connected.

Fig. 1. Graphical representation of a Fractal composite

2.2 Julia

Julia (http://fractal.objectweb.org) is the Java-based reference implemen-
tation of the Fractal framework which implements the Fractal API. Julia aims
to simplify the construction of Fractal applications through the generation of
support classes, which allow standard Java classes to adhere to the Fractal com-
ponent model. A developer using Julia who wishes to create a Fractal component
must only provide code associated to application logic (the code that implements
the functional interfaces or component implementation). Julia generates a set of
classes which include implementations of control interfaces as well as intercep-
tors between functional interfaces and the component implementation. Support

http://fractal.objectweb.org

278 M. Desertot, H. Cervantes, and D. Donsez

classes are generated either in a static or in a dynamic way through mixin and
byte code injection techniques. It must be noted that Julia is not the only Frac-
tal implementation; other implementations of Fractal are also available for other
languages and frameworks such as C, C#, Smalltalk, JavaScript, etc.

2.3 Construction of Fractal Applications Using Julia

A Fractal application is typically built from a set of classes implementing the
application logic contained in the components, one or more coordination classes,
as well as a primary class (bootstrap) responsible for performing the applica-
tion startup. Coordination classes interact with the Fractal framework to create
the different component types, component instances and instance connections
required by the application. Coordination logic can be written either program-
matically or declaratively using the Fractal Architecture Description Language
(ADL). It must be noted that the ADL only allows static compositions between
component instances to be described; as a consequence, dynamic changes must
be programmed explicitly in the application code.

3 FROGi

As previously described, the Fractal component model intends to be general and
allow many types of applications to be constructed, either distributed or not.
Construction of applications using this model is beneficial for several reasons.
First, Fractal is an extensible model; it allows the developer to extend it by pro-
viding additional control interfaces and by extending its ADL as well. Fractal is
also flexible since it permits to dynamically adapt the binding configuration be-
tween the components (although this has to be done programmatically through
the API). Finally its hierarchical model provides a way to build coarse com-
ponents by composing finer components. Fractal enables also the management
of the non-functional aspects of components. Despite these advantages, Fractal
still has some limitations. The first concerns component deployment since noth-
ing is specified in Fractal regarding this aspect. Although this issue has been
addressed by some recent work, proposed solutions are limited because they do
not support component unloading when components are not used anymore (see
related work section). The second limitation concerns component packaging. As
deployment is not currently addressed, no deployment unit has been specified.
As a result, a Fractal application is delivered a set of classes. Although these
classes can be packaged together in a JAR file (Java ARchive), the components
themselves cannot be delivered independently. The last limitation concerns the
versioning of the components constituting the application. It is not currently
possible to support multiple versions of components running simultaneously as
classes or package versioning is not supported, although this is more a limitation
of standard Java.

FROGi: Fractal Components Deployment over OSGi 279

On the other hand, Service-Oriented Architectures (SOA) [2,7] are built fol-
lowing a different model. Services are similar to components in the sense that
they are composed to build applications. Services, however, are specifically de-
signed to be shared at runtime. Services are usually discovered using a service
registry before being used in a composition. Web services are the most common
incarnation of SOA, however, other frameworks which are based on the SOA
principles also exist. OSGi is one of them and is presented later in this article.
OSGi was initially designed to build applications running inside home gateways;
this kind of environment is typically shared by several providers and must run
continuously.

The construction of a component-based application or a service-based appli-
cation requires different concerns to be addressed. The main difference is that in
component models, bindings are static and explicitly described (naming) whereas
in service architectures bindings are dynamic as services are referenced in a reg-
istry (trading) and can appear or disappear at runtime. Moreover, components
tend to be fine-grained assembly units. It is possible to create a considerable
amount of component instances inside an application. For instance, a large num-
ber of components can be deployed in an application server. On the other side,
services. are usually designed to be coarse-grained entities. A reason for this is
that in service orientation the program must deal with the inherent dynamism.
Therefore the lookup and adaptation required to support dynamic service avail-
ability tend to be resource consuming activities which are too costly for fine
grained components.

FROGi introduces an approach where concepts from component orientation
and service orientation are mixed. FROGi components (either single components
or compositions) are used to provide services. This approach allows applications
to be constructed as hierarchical compositions where bindings are dynamic. Dy-
namic binding is supported through the introduction of service orientation con-
cepts. Furthermore, the introduction of support for dynamic binding also allows
dynamic deployment activities to be performed.

FROGi is built by introducing the OSGi service platform into Fractal. FROGi
intends to illustrate that OSGi can be used to deploy applications build using
different component models and furthermore to be able to make these applica-
tions interact. This interoperability can occur, for example, between a Fractal
component and another like an EJB. The authors have already demonstrated
in [8] the dynamic deployment of J2EE applications and technical services on
Java EE application servers running on the top of OSGi platform. In this case,
FROGi offers a deployment container that takes in charge bindings between
components using inversion of control [9], in a similar way to PicoContainer
[11]. Finally, FROGi also allows Fractal-based applications to benefit from all
the legacy services already offered by the OSGi platform. For instance, Comanche
HTTP, a web server implemented with Fractal, can use the Log service specified
in OSGi.

280 M. Desertot, H. Cervantes, and D. Donsez

4 FROGi Implementation

This section discusses the implementation of FROGi by describing the OSGi
framework upon which FROGi is built. It also discusses how components are
packaged, an ADL that is used for deployment and finally a generation chain.

4.1 The OSGi Framework

The Open Services Gateway Initiative (OSGi) Alliance [16] is an independent,
non-profit corporation working to define and promote open specifications origi-
nally intended for the delivery of managed services to networked environments,
such as homes and automobiles. These specifications include the definition of
the OSGi Services Platform, which consists of two pieces: the OSGi framework
and a set of standard service definitions. The OSGi framework is a Java-based
deployment and execution environment for components. The OSGi framework
was originally conceived to be used inside restricted environments, such as set-
top boxes. The OSGi framework can however be used in other domains, as for
example, an infrastructure to support underlying release 3.0 of the Eclipse IDE
and of the Eclipse RCP.

The OSGi framework supports uninterrupted deployment of components that
are delivered inside of bundles. The framework also provides a service registry
that allows the components to interact following a service-oriented approach. In
OSGi, each bundle is used to deploy a single component that results in a unique
instance at run time (singleton). The continuous deployment activities supported
by the framework include bundle installation, activation, deactivation, update
and de-installation of the bundles. The framework ensures that deployment de-
pendencies at the bundle level are satisfied before allowing the bundle to be
activated. Bundle activation results in the creation of the component instance
deployed inside the bundle.

Physically, a bundle is packaged a jar file that contains binary code as well
as resources needed by the component. The jar file manifest file provides meta-
information that describes the bundle’s dependencies and the name of an acti-
vation class. This class is instantiated by the framework upon bundle activation.
The bundle’s dependencies are divided between deployment-time and run-time
dependencies. Deployment-time dependencies are code dependencies described
as packages that are exported and imported by the bundles. Run-time depen-
dencies describe the services that are provided or required by the component
that is deployed inside the bundle.

Component instances can publish or discover services provided by other com-
ponent instances at run-time. In OSGi, a service is published from a service
interface, a reference toward the component implementing the service and a set
of properties. Those properties, defined as keys and values, allow clients to differ-
entiate two equivalent service offers (i.e. two services with the same interfaces).
Moreover, the registry allows constraint searches to be made using filters based
on the properties following LDAP syntax. Because service publication or depar-
ture can occur at anytime, the service registry supports a notification mechanism

FROGi: Fractal Components Deployment over OSGi 281

that allows service clients to be aware of a particular service arrival or departure
events. In OSGi application assembly occurs at execution time as a result of the
interaction between components and the service registry.

4.2 Component Packaging

In FROGi, a Fractal application is packaged as one or more bundles. It is impor-
tant to notice that inside a single bundle, FROGi components are bound together
following the standard Fractal approach. However, when components are deliv-
ered in separate bundles, components become service providers and binding is
performed using the service-oriented interaction pattern which is facilitated by
the OSGi platform.

Because a Fractal application is built as a hierarchical composition, FROGi
supports independent packaging of primitive components as well as compos-
ites. As a consequence, it is possible to perform independent delivery as well as
independent update of the components. The example of figure 2 presents the
application from figure 1 packaged as a set of bundles. In this example, each
component is delivered in a different bundle: B0 for the composite, B1 for the
client and B2 for server.

Fig. 2. Fractal application packaged as a set of OSGi bundles

It is important to notice that once published, service interfaces become sta-
ble contracts which evolve slowly while their implementations can evolve more
frequently. As a consequence, service interfaces used for the binding between
components should be delivered in separate bundles (for example bundle B3 in
the figure 2 contains the interfaces implemented by the components in the other
bundles). The bundles that implement interfaces have a deployment-time de-
pendency towards the bundle that contains them. The independent delivery of
service interfaces allows implementation bundles to be updated without impact

282 M. Desertot, H. Cervantes, and D. Donsez

on the other bundles. If services interfaces were delivered with their implementa-
tion, a bundle update would lead to stopping and restarting (i.e. refresh) of the
bundles that depend on those services interfaces. This situation can be problem-
atic when applications run in non-stop environments. In FROGi, the Fractal API
as well as the Julia runtime are themselves delivered inside a bundle (fractal.jar);
this bundle exports packages that must be imported by bundles containing Frac-
tal components.

FROGi uses standard OSGi mechanisms for managing deployment activi-
ties of a bundle-based Fractal application. During bundle installation, the OSGi
framework resolves in an automatic way deployment dependencies correspond-
ing to packages containing service interfaces as well as the Fractal API. When
those dependencies are resolved, the bundle can be activated. Activation of a
FROGi bundle results in the instantiation and activation of an object from a
generic class, FrogiBundleActivator, contained in each FROGi bundle. This class
is responsible for configuring Julia execution environment (notably by specifying
that the classloader to use is the bundle one). It then instantiates a primary class
(i.e. BootStrap) that is responsible for creating the component(s) instance(s) de-
livered by the bundle.

4.3 Component Runtime

This section describes the runtime environment associated to FROGi.

Controller Publication. Once a FROGi component instance (i.e., Fractal
components located at the bundle root) is created, its control interfaces are
published in the OSGi service registry. The publication of those interfaces allows
a third party bundle (its encapsulating composite or an administration bundle)
to control the component instance’s lifecycle. Management can, however, also be
performed externally, for example using a JMX Agent [10].

Instance Binding. Trading associated with the service oriented approach is
used in FROGi to support binding of component instances that are delivered in
different bundles. The use of trading allows flexible bindings to be created. A
binding can be performed, for instance, with regard to any instance providing
a particular service (i.e. org.osgi.service.log.LogService). Furthermore, services
are characterized by a set of registration properties (such as ”‘language=en”’ or
”‘cron.pattern=***3***”’ in figure 2). Trading also allows ’static’ bindings to be
created. In that case a service request must contain the unique instance identifier
(i.e. the property service.pid) towards which the binding must be created.

Life-cycle and Binding Management. FROGi proposes two policies to man-
age the life-cycle and binding of the components: a composite-driven policy and
an autonomic policy. The instance life-cycle of a root component can be man-
aged either by its composite (delivered in another bundle), either by itself in an
autonomous way. Life-cycle management by the composite requires the instance
control interfaces to be published as services in OSGi service registry. Each

FROGi: Fractal Components Deployment over OSGi 283

service is identified by the service.pid properties. This properties identifies the
instance that provides the service in a unique and persistent way. The composite
creates bindings between instances through the BindingController services they
expose. Once those binding are created, the composite activates the instances
with the help of their LifeCycleController services.

The alternative to this policy is to consider the bundle as an autonomous life
cycle management unit of the instance with regard to its composite. This policy
is inspired from the Service Binder (see section 6.2). The instance is started as
soon as mandatory services dependencies are available in the registry. This last
policy is used for connecting components to legacy bundles that are devoid of
life cycle and binding controllers.

Dynamic reconfiguration. Whatever policy is used, it is necessary to sup-
port dynamic reconfiguration when the framework notifies that new components
are introduced or removed from the environment. If an arriving component is
required by another one, the binding must be performed. If a component leaves,
the components that depend on it must check in the registry that the mandatory
services they depend on are still available. In the case of the autonomous policy,
provided services are systematically unregistered of OSGi registry at compo-
nent stopping time. They are registered again (still with the same service.pid
attribute) during the component instance restart.

Application Activation. A Fractal application is a component/composite that
can be activated from one of its functional interfaces by Fractal support classes
such as org.objectweb.fractal.adl.Launcher. In OSGi, the application concept
doesn’t really exist: the application is built as a set of bundles that create con-
nections as they are installed or removed from the framework. Bundles can,
however, be classified into two categories: support bundles (i.e., which provide
services), and coordination bundles (which may not provide services but use
services provided by other bundles). Coordination bundles are closer to the con-
cept of an application, however, these bundles may themselves provide services
to other bundles and become part of a bigger application. In FROGi, an appli-
cation manager is responsible for activating the Fractal application deployed on
OSGi. This can be for instance a Cron Service calling the run() method of a
component or an administrator command executed on the terminal console.

4.4 Extensions to the Fractal ADL

Fractal provides an Architecture Description Language (ADL) that allows com-
ponent assemblies to be described. As previously mentioned, this ADL is exten-
sible. FROGi extends this ADL to take into account the deployment aspects of
the components, i.e. Packaging them within bundles.

The extended ADL is specified as shown in figure 3. This example presents the
Fractal ADL description used to obtain the FROGi packaging of figure 2 for the
application depicted in figure 1. The <bundle> sub-element of the <component>
and <definition> elements define how components are packaged inside the

284 M. Desertot, H. Cervantes, and D. Donsez

Fig. 3. The Extended Fractal ADL

bundle identified by the name attribute. The version attribute specifies the
overall implementation version. It corresponds to the bundle’s Bundle-Version
manifest attribute in OSGi. All the elements that are declared after a bundle
element are packaged together in the same bundle and this occurs until another
<bundle> element is encountered.

The bundle attribute under the <interface> element indicates that the in-
terface must be packaged inside another bundle whose name is specified by the
name value. If the bundle attribute value is an empty string, the interface is not
packaged by FROGi: it is already available in another bundle, generally a legacy
bundle. By default, if nothing is specified, service interfaces are packaged in the
same bundle as their component implementation. The version attribute of the
<interface> element declares the package specification version (i.e. contract)
of the interface. The default version value is 0.0.0.

The sub-element <property> of the <interface> element defines some prop-
erties that are associated to the service interface and which are used when the
interface is published in the service registry. Those properties are used for service
trading and and to provide information to application managers.

The sub-element <binding> of the <component> and <description> ele-
ments is used simultaneously to create standard Fractal bindings between in-
stances created in the same bundle, bindings between instances created into
separate bundles and bindings between instances and legacy OSGi services. The
server attribute can be substituted by a filterserver attribute whose value
is a LDAP expression that the requiring service must match to perform the
binding. This attribute is not available for standard Fractal bindings (i.e. intra-
bundle). We can notice that the serverfilter="(service.pid=server.y2)"
attribute is equivalent to server="server.y2".

FROGi: Fractal Components Deployment over OSGi 285

4.5 Generation and Deployment Chain

The extended ADL presented in the previous section allows packaging tasks to be
automated using a generation and deployment chain. Once Fractal components
are packaged inside bundles, the facilities provided by the OSGi platform are
used to perform their deployment.

The first step in the chain is concerned with bundle generation. This activity is
performed by the FROGi packager (left of figure 4). The packager parses the ADL
and packages interfaces and implementations following the ADL descriptor. The
packager tries to separate interfaces from implementations since this is essential
to support dynamic component updates.

The deployment is managed by another tool dedicated to OSGi deployment
(right of figure 4). This tool manages OSGi gateways distributed over several
nodes. It reads deployment files that are produced by the FROGi packager (xml
files). These files contain both the localizations of the generated bundles and
the gateway on which they must be deployed. The description also contains
the dependencies between the bundles. The tool deploys the FROGi bundles
and, if necessary, depending of the state of the targeted OSGi platform, it also
deploys required OSGi legacy bundles. Those bundles, and possibly their depen-
dencies, are made available from bundle repositories (such as the Oscar Bundle
Repository, Oscar (http://oscar.objectweb.org) being the open source OSGi
implementation we are using for demonstration purposes).

Fig. 4. Generation and deployment chain

4.6 Security

Service oriented architectures and service deployment require security aspects to
be taken into account. In the context of FROGi, it is necessary to ensure that an
architecture that is deployed using the ADL functions properly after installation.
The components that interact with legacy OSGi services must be able to trust

http://oscar.objectweb.org

286 M. Desertot, H. Cervantes, and D. Donsez

them. This concern is exacerbated by the fact that the OSGi environment is
designed to be operated by different actors, and a FROGi-based application
may coexist with unsafe bundles from a different provider.

FROGi currently relies on the mechanisms provided by the OSGi framework
to handle security. These mechanisms allow bundles to be signed so that other
bundles can verify their origin. This offers an initial level of security. The second
level occurs at the service level. OSGi provides a mechanism that allows services
to be traded according to security policies. Furthermore, those policies can be
updated dynamically. Security mechanisms at the service level are adequate
for FROGi because they bring additional capabilities to the component model.
Finally, It must be noted that Fractal does not support these concepts (which
is understandable as it targets mono-operated applications).

5 Experimentation

This section presents an experimentation which compares the creation of an
HTTP server using a ”‘standard”’ approach versus a FROGi-based approach.
The experimentation is inspired from the comanche HTTP server discussed in
the Fractal tutorial.

5.1 Using Standard Fractal

Figure 5 depicts a minimal HTTP server. This server is assembled as a composite
component that is responsible of receiving, analyzing and dispatching requests
(to simplify, only the external composite is shown, not the contained compo-
nents). This component requires a Log component and one or more handlers
towards which the requests will be directed. Before a call arrives to a handler,
the request may go through different filters that are capable of adapting the
requests or that can be used as probes for example to collect information. To re-
alize this example in standard Fractal, all the needed components are described
in the ADL along with their bindings.

Fig. 5. A minimal HTTP server with Fractal

Once deployed and during execution, it is still possible to adapt the bind-
ings between the components. For example it is possible to disconnect the Log
component if we do not want to trace the requests anymore. It is also possible

FROGi: Fractal Components Deployment over OSGi 287

to adapt the filter chain between the requests manager and the request han-
dler by connecting or disconnecting filters. This adaptation is taken in charge
by the requests analyzer and dispatcher. What is not possible, however, is to
add dynamically a new filter that was not previously described in the ADL.
This is simply because the implementation classes of this filter are not deployed
with the original application. The same problem occurs if a filter needs to be
updated, for example for performance reasons. It is possible to disconnect the
filter properly but no mechanism is available to perform an update of the filter’s
implementation and maintain the coherency.

5.2 Using FROGi

The construction of the same example using FROGi illustrates three key points:
the capability of using legacy OSGi services, of dynamically deploying new com-
ponents and of updating components without restarting the application.

Fig. 6. A minimal HTTP server with FROGi

Figure 6 depicts how the HTTP server application is assembled and deployed
using FROGi components. The capability of using legacy OSGi services is il-
lustrated by replacing the previous Fractal log component with the Log service
defined in the OSGi specification. Deployment concerns are now addressed since
the components are packaged into different bundles which are later managed
by OSGi framework. In this example, the filter components are packaged and
delivered in different bundles. As a result new filters can be deployed easily. Us-
ing the trading mechanisms, the Dispacher is able to select, among the set of
filters, the ones that it requires to create the filter chain. Updating a component
is also possible and is supported by the OSGi update mechanism. First of all,
bindings with the corresponding component are relieved. Then the update mech-
anism manages the download, replacement and reactivation of the component
embedded in the bundle. During this period, Fractal’s interception capabilities
are used to hold the calls towards the components until it they are reactivated.
It is interesting to notice that as soon as a component is not used anymore, it
is possible to uninstall it and completely free the resources it was using. F This
simple example shows that the FROGi’s features introduce important benefits
into the standard Fractal model.

288 M. Desertot, H. Cervantes, and D. Donsez

6 Related Works

This section presents different related works concerning the OSGi use as an in-
frastructure for deploying components as well as Fractal components packaging.

6.1 Beanome

Using OSGi as a component deployment infrastructure is explored in the
Beanome component model [4]. In Beanome, OSGi bundles are used to deploy
COM-like components. Moreover, the OSGi service registry is used to publish
components factories when the bundle is activated. A benefit of registering com-
ponent factories as services is that factories can be located based on the func-
tionalities of the components they create and not only from a unique identifier
as in COM. Beanome, however, does not provide support for dynamic changes.

6.2 Gravity

The Gravity project [5] explores the creation of applications with autonomous
adaptation capabilities towards component availability. Gravity introduces a ser-
vice oriented component model in which trading is used at run time to bind
component instances as well as to maintain compositions despite components
arrival and departure. In Gravity, an execution environment entity, called the
Service Binder, is in charge of adapting component instances and compositions
with respect to dynamic changes. Gravity is built as a layer on top of OSGi, and
the Service Binder is deployed as a bundle inside the service platform. A draw-
back of Gravity is that is uses a particular component model that is nevertheless
not far from Fractal. Many of the ideas introduced in the Service Binder have
been recently added to the OSGi specification’s 4th release under the name of
Service Component Runtime (Declarative Services). This component is also the
subject of the JSR 291 (Dynamic Component Support for Java SE) submitted
to the JCP by several members of the OSGi Alliance.

6.3 Fractal Packages and Deployment Activities

Some discussions on the Fractal mailing list mention the definition of a packaging
mechanism for Fractal components and some work has been realized concerning
this mechanism. The proposals that have been made also rely on OSGi but only
for packaging purposes (packaging units are .FAR)[1]. An XML manifest that
contains the metadata is added to the archive. Deployment is supported but
it is impossible to update components at runtime. This proposal does, however,
not consider the existence of an infrastructure to perform continuous deployment
activities. This issue is addressed in another work [12]. This proposal uses a layer
that supports the creation of Java classloaders to bring additional components
to an application at runtime. This work does, however, not support component
uninstall.

FROGi: Fractal Components Deployment over OSGi 289

6.4 JSR277

Packaging an application is one of the most recurrent problems to facilitate
deployment. JSR277 (Java Module System http://www.jcp.org/en/jsr/
detail?id=277) aims to specify an unified packaging model for all Java software
for J2SE 1.7 (2007). JSR277 intends to overtake JNLP, J2EE EAR, OSGi R4
packaging formats. It will be based on the JAR file format and the Manifest will
be augmented by explicit versioned package dependencies. In fact, the chapter
”Module Layer” of the recent OSGi R4 specifications already covers all of JSR
277 requirements. Moreover, JSR277 does not address the OSGi service layer
which enables to build dynamic service-oriented architectures of Java applica-
tions as SCR, JSR 291 or FROGi. If this JSR is integrated in Java, FROGi
would already be compliant at the packaging level with future Java versions.

7 Conclusions and Perspectives

This paper has presented FROGi, a proposition that is based on the introduction
of some characteristics of the OSGi service platform in the Fractal component
model. With FROGi, a Fractal application is packaged inside one or more OSGi
bundles; this allows the components to be delivered and deployed individually
and continuously. Moreover, binding between components instances can be re-
alized either through the ’standard’ Fractal connexion technique, either by the
publication of functional interfaces in the services registry and the use of OSGi
proper trading technique. In addition, FROGi proposes Fractal ADL extensions
to automate packaging and deployment. It must be pointed out that FROGi,
as well as the different works described in the fifth section, show that OSGi is
an ideal platform to perform component deployment, application update and
code versioning. Nevertheless, some points have not been considered in the work
realized until now:

Multiple instances creation mechanism: Fractal supports the creation of a
variable number of component instances. The work presented here focuses on a
singleton based approach. A way to resolve this, still being compatible with the
OSGi environment, is to publish components factories through services (similar
to the approach followed by Beanome and described in 6.1).
Architecture introspection: as we assume that different kinds of components
can be deployed and bound on OSGi, it is desirable to expose the architecture
of the application independently of the technologies we are using. An example
of such architecture viewer is Fractal Explorer but it only manages pure Fratal
applications.

Finally, as it was mentioned in the second part, there is currently not a clear
vision of the difference between component models and service oriented archi-
tectures. Most of the time, these approaches are considered either as orthogonal
aspects, either as similar approaches. We have already cited some tracks on the
subject and this is the focus of our current research. For instance we are cur-
rently working on the interoperability we can have between Fractal and EJB

http://www.jcp.org/en/jsr/detail?id=277
http://www.jcp.org/en/jsr/detail?id=277

290 M. Desertot, H. Cervantes, and D. Donsez

components model inside an application server and on component deployment
on heterogeneous platforms [13].

References

1. Abdellatif, T., Kornas, J. And Stephani, J-B.: J2EE Packaging, Deployment and
Reconfiguration Using a General Component Model. Proceedings of Component
Deployment, CD, Grenoble 2005

2. Bieber, G., Carpenter, J.: Introduction to Service-Oriented Programming.
OpenWings whitepaper, Septembre 2001, http://www.openwings.org/download/
specs/ServiceOrientedIntroduction.pdf

3. Bruneton, E., Coupaye, T. and Stefani, J.B.: The Fractal Composition Framework
Version 2.0-3. Object Web Consortium, July 2004.

4. Cervantes, H. and Hall, R.S.: Beanome, A Component Model for the OSGi Frame-
work. Proceedings of the workshop Software Infrastructures for Component Based
Applications on Consumer Devices, Lausanne, 2002

5. Cervantes, H. and Hall, R.S.: Automating Service Dependency Management in a
Service-Oriented Component Model. Proceedings of CBSE 6, Portland, USA, 2003

6. Cervantes, H., Desertot, M. And Donsez, B.: FROGi: Dploiement de composents
Fractal sur OSGi. Proceedings of Decor’04, CoRR, Grenoble 2004

7. Cervantes, H. and Hall R. S.: Chapter I: Service Oriented Concepts and Tech-
nologies. In the book ”Service-Oriented Software System Engineering: Challenges
and Practices” (ISBN 1-59140-426-6) edited by Zoran Stojanovic and Ajantha Da-
hanayake, Idea Group Publishing, 2005.

8. Desertot, M., Escoffier, C. And Donsez, D.: Autonomic administration of J2EE
Edge Servers. Proceedings of the International Worshop of Middleware for Grid
Computing (MGC), Grenoble, 2005

9. Fowler, M.: Inversion of Control and the Dependency Injection Pattern. Online
Document, 2004. http://martinfowler.com/articles/injection.html

10. Frnot, S. And Stefan D.: Instrumentation de plate formes de services ouvertes
Getion JMX sur OSGi. Ubimob, Nice, 2004

11. Hammant, P., Hellesoy, A., and Tirsen, J.: PicoContainer: a lightweight embed-
dable container. http://www.picocontainer.org

12. Kornas, J., Leclercq, M., Quema, V. And Stephani, J-B.: Support pour la recon-
figuration d’implantation dans les applications a composants Java. Proceedings of
Decor’04, CoRR, Grenoble 2004

13. Marin, C. And Desertot, M.: SensorBean: A Component Platform for Sensor-Based
Services. Proceedings of the International Worshop of Middleware for Pervasive and
Ad-Hoc Compouting (MPAC), Grenoble, 2005

14. Szyperski, C.: Component software: beyond object-oriented programming. ACM
Press/Addison-Wesley Publishing Co., 1998.

http://www.openwings.org/download/specs/ServiceOrientedIntroduction.pdf
http://www.openwings.org/download/specs/ServiceOrientedIntroduction.pdf
http://martinfowler.com/articles/injection.html
http://www.picocontainer.org

	Introduction
	The Fractal Component Model
	Fractal
	Julia
	Construction of Fractal Applications Using Julia

	FROGi
	FROGi Implementation
	The OSGi Framework
	Component Packaging
	Component Runtime
	Controller Publication.
	Instance Binding.
	Life-cycle and Binding Management.
	Dynamic reconfiguration.
	Application Activation.

	Extensions to the Fractal ADL
	Generation and Deployment Chain
	Security

	Experimentation
	Using Standard Fractal
	Using FROGi

	Related Works
	Beanome
	Gravity
	Fractal Packages and Deployment Activities
	JSR277

	Conclusions and Perspectives

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

